Алгоритм Касаи и др. — различия между версиями
Shersh (обсуждение | вклад) м (→Описание алгоритма и псевдокод) |
KK (обсуждение | вклад) м (→Описание алгоритма и псевдокод) |
||
Строка 59: | Строка 59: | ||
'''int[]''' buildLCP(str: '''string''', suf: '''int[]''') <font color=green> // str {{---}} исходная строка с добавленным специальным символом $ </font> | '''int[]''' buildLCP(str: '''string''', suf: '''int[]''') <font color=green> // str {{---}} исходная строка с добавленным специальным символом $ </font> | ||
<font color=green> // suf[] {{---}} суффиксный массив строки str </font> | <font color=green> // suf[] {{---}} суффиксный массив строки str </font> | ||
− | '''int''' len <tex> | + | '''int''' len <tex>=</tex> str.length |
'''int[len]''' lcp | '''int[len]''' lcp | ||
'''int[len]''' pos <font color=green> // pos[] {{---}} массив, обратный массиву suf </font> | '''int[len]''' pos <font color=green> // pos[] {{---}} массив, обратный массиву suf </font> | ||
'''for''' i = 0 '''to''' len - 1 | '''for''' i = 0 '''to''' len - 1 | ||
− | pos[suf[i]] <tex> | + | pos[suf[i]] <tex>=</tex> i |
− | '''int''' k <tex> | + | '''int''' k <tex>=</tex> 0 |
'''for''' i = 0 '''to''' len - 1 | '''for''' i = 0 '''to''' len - 1 | ||
'''if''' k > 0 | '''if''' k > 0 | ||
k-- | k-- | ||
'''if''' pos[i] == len - 1 | '''if''' pos[i] == len - 1 | ||
− | lcp[len - 1] <tex> | + | lcp[len - 1] <tex>=</tex> -1 |
− | k <tex> | + | k <tex>=</tex> 0 |
'''else''' | '''else''' | ||
− | '''int''' j <tex> | + | '''int''' j <tex>=</tex> suf[pos[i] + 1] |
'''while''' max(i + k, j + k) < len '''and''' str[i + k] == str[j + k] | '''while''' max(i + k, j + k) < len '''and''' str[i + k] == str[j + k] | ||
k++ | k++ | ||
− | lcp[pos[i]] <tex> | + | lcp[pos[i]] <tex>=</tex> k |
'''return''' lcp | '''return''' lcp | ||
Версия 22:34, 13 апреля 2015
Алгоритм Касаи, Аримуры, Арикавы, Ли, Парка (англ. algorithm of Kasai, Arimura, Arikawa, Lee, Park) — алгоритм, позволяющий за линейное время вычислить длину наибольших общих префиксов (англ. longest common prefix, LCP) для соседних циклических сдвигов строки, отсортированных в лексикографическом порядке.
Содержание
Обозначения
Задана строка
. Тогда — суффикс строки , начинающийся в -ом символе. Пусть задан суффиксный массив . Для вычисления будем использовать промежуточный массив . Массив определен как обратный к массиву . Он может быть получен немедленно, если задан массив . Если , то .— длина наибольшего общего префикса и строк в суффиксном массиве ( и соответственно).
Некоторые свойства
Факт №1
между двумя суффиксами — это минимум всех пар соседних суффиксов между ними в суффиксном массиве . То есть . Отсюда следует, что пары соседних суффиксов в массиве больше или равно пары суффиксов, окружающих их.
Утверждение: |
Факт №2
Если значение
Утверждение: |
Если , тогда |
Факт №3
В этом же случае, значение
Утверждение: |
Если , тогда |
Вспомогательные утверждения
Теперь рассмотрим следующую задачу: рассчитать
между суффиксом и его соседним суффиксом в массиве , при условии, что значение между и его соседним суффиксом известны. Для удобства записи пусть и . Так же пусть и . Проще говоря, мы хотим посчитать , когда заданоЛемма: |
Если , тогда |
Доказательство: |
Так как | , имеем из факта №2. Так как , имеем из факта №1
Теорема: |
Если , то |
Доказательство: |
(из леммы) Значит, (из факта №3). |
Описание алгоритма и псевдокод
Таким образом, начиная проверять
для текущего суффикса не с первого символа, а с указанного, можно за линейное время построить . Покажем, что построение таким образом действительно требует времени. Действительно, на каждой итерации текущее значение может быть не более чем на единицу меньше предыдущего. Таким образом, значения в сумме могут увеличиться не более, чем на (с точностью до константы). Следовательно, алгоритм построит за .
int[] buildLCP(str: string, suf: int[]) // str — исходная строка с добавленным специальным символом $ // suf[] — суффиксный массив строки str int lenstr.length int[len] lcp int[len] pos // pos[] — массив, обратный массиву suf for i = 0 to len - 1 pos[suf[i]] i int k 0 for i = 0 to len - 1 if k > 0 k-- if pos[i] == len - 1 lcp[len - 1] -1 k 0 else int j suf[pos[i] + 1] while max(i + k, j + k) < len and str[i + k] == str[j + k] k++ lcp[pos[i]] k return lcp