Пересечение многоугольников (PSLG overlaying) — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 25: Строка 25:
 
=== Грани ===
 
=== Грани ===
 
Необходимо получить информацию о гранях итогового РСДС: ссылка на полуребро внешней границы, список ссылкок на полуребра дырок внутри грани, ссылка на грани из <tex>S_1</tex> и <tex>S_2</tex>, содержащие новую грань. Также необходимо для полуребер установить ссылки на инцидентную грань.
 
Необходимо получить информацию о гранях итогового РСДС: ссылка на полуребро внешней границы, список ссылкок на полуребра дырок внутри грани, ссылка на грани из <tex>S_1</tex> и <tex>S_2</tex>, содержащие новую грань. Также необходимо для полуребер установить ссылки на инцидентную грань.
Количество граней будет на единицу больше, чем количество внешних границ (дополнительная грань ограничивает весь ППЛГ). Для того, чтобы определить, является цикл внешней границей или дыркой, рассмотрим самую левую вершину цикла <tex>v</tex> (нижнюю из левых, в случае равенства). Напомним, что полуребра ориентированы так, что инцидентная им грань лежит левее полуребра. С учетом этого, оценим угол внутри грани между полуребрами, инцидентными <tex>v</tex>. Если угол меньше <tex>180\degree</tex>, то цикл является внешней границей, в противном случае – дыркой. Данное свойство выполняется для вершины <tex>v</tex>, но может не выполняться для остальных вершин.
+
Количество граней будет на единицу больше, чем количество внешних границ (дополнительная грань ограничивает весь ППЛГ). Для того, чтобы определить, является цикл внешней границей или дыркой, рассмотрим самую левую вершину цикла <tex>v</tex> (нижнюю из левых, в случае равенства). Напомним, что полуребра ориентированы так, что инцидентная им грань лежит левее полуребра. С учетом этого, оценим угол внутри грани между полуребрами, инцидентными <tex>v</tex>. Если угол меньше <tex>180^\circ</tex>, то цикл является внешней границей, в противном случае – дыркой. Данное свойство выполняется для вершины <tex>v</tex>, но может не выполняться для остальных вершин.

Версия 14:57, 17 мая 2015

Постановка задачи

Определим пересечение двух ППЛГ [math]S_1[/math] и [math]S_2[/math] как ППЛГ [math]O(S_1, S_2)[/math], такой, что в нем существует грань [math]f[/math] тогда и только тогда, когда существуют грани [math]f_1[/math] в [math]S_1[/math] и [math]f_2[/math] в [math]S_2[/math] такие, что [math]f[/math] является наибольшим связным подмножеством [math]f_1 \cap f_2[/math]. Иначе говоря, пересечение двух ППЛГ — это разбиение плоскости с помощью ребер из [math]S_1[/math] и [math]S_2[/math]. Необходимо построить РСДС для [math]O(S_1, S_2)[/math], имея РСДС для [math]S_1[/math] и [math]S_2[/math]. Кроме того, для каждой грани из [math]O(S_1, S_2)[/math] будем хранить ссылки на грани из [math]S_1[/math] и [math]S_2[/math], содержащие ее.

<картинка>

Алгоритм

Для начала, скопируем ППЛГ [math]S_1[/math] и [math]S_2[/math] в новый РСДС. Далее необходимо преобразовать полученный РСДС, чтобы он соответствовал [math]O(S_1, S_2)[/math]. Отдельно рассмотрим преобразования вершин, полуребер и граней.

Вершины и полуребра

Алгоритм базируется на заметающей прямой, определяющей пересечения отрезков. Запускаем алгоритм на множестве отрезков, представляющих собой ребра из [math]S_1[/math] и [math]S_2[/math]. Напомним, что алгоритм поддерживает очередь событий [math]Q[/math] и текущий статус [math]T[/math] заметающей прямой. Также будем поддерживать ссылки между ребрами статуса и соответствующими полуребрами из РСДС. Поддерживаемый инвариант: над заметающей прямой корректный РСДС.

<картинка>

Обработка точки события происходит следующим образом: сначала обновляем [math]Q[/math] и [math]T[/math] (как в алгоритме пересечения отрезков). Если оба ребра события принадлежат одному ППЛГ, переходим к следующему событию. В противном случае, необходимо модифицировать РСДС. Возможны следующие варианты событий (см. рисунок ниже):

<картинка>

Рассмотрим один из случаев, остальные обрабатываются аналогично. Пусть ребро [math]e[/math] из [math]S_1[/math] пересекает вершину [math]v[/math] из [math]S_2[/math]. Ребро [math]e[/math] заменяем двумя ребрами [math]e'[/math] и [math]e''[/math]. Два полуребра, соответствующих [math]e[/math], заменяются четырьмя полуребрами: два существующих полуребра будут исходить из концов [math]e[/math], а два новых полуребра — из [math]v[/math] (см. рисунок). Устанавливаем ссылки на близнецов для ребер [math]e'[/math] и [math]e''[/math]. Обновим ссылки на следующие полуребра для [math]h_1[/math] и [math]h_4[/math], пусть это будут [math]h_5[/math] и [math]h_6[/math], соответственно. Не забудем установить полуребра [math]h_1[/math] и [math]h_4[/math] в качестве предыдущих полуребер у [math]h_5[/math] и [math]h_6[/math]. Теперь обновим ссылки на полуребра, инцидентные вершине [math]v[/math]. Для этого сначала при помощи порядка обхода определим, между какими полуребрами [math]S_2[/math] находится [math]e[/math]. Рассмотрим полуребро [math]h_3[/math]: свяжем его с первым полуребром, видимым из [math]h_4[/math] при обходе по часовой стрелке и исходящем из [math]v[/math]. Полуребро [math]h_4[/math] должно быть связано с первым полуребром, идущим в [math]v[/math], при обходе против часовой стрелки. Аналогично обработаем [math]e''[/math].

<картинка>

Время работы

Большинство шагов алгоритма требуют константное время. Определение соседних полуребер с [math]e'[/math] и [math]e''[/math] происходит за линейное время от степени вершины. Следовательно, обновление РСДС не увеличивает время работы алгоритма пересечения отрезков, поэтому сведения о вершинах и полуребрах для итогового РСДС могут быть вычислены за время [math]O(n \log{n} + k \log{n})[/math], где [math]n[/math] — сумма сложности [math]S_1[/math] и [math]S_2[/math], [math]k[/math] — сложность пересечения.

Грани

Необходимо получить информацию о гранях итогового РСДС: ссылка на полуребро внешней границы, список ссылкок на полуребра дырок внутри грани, ссылка на грани из [math]S_1[/math] и [math]S_2[/math], содержащие новую грань. Также необходимо для полуребер установить ссылки на инцидентную грань. Количество граней будет на единицу больше, чем количество внешних границ (дополнительная грань ограничивает весь ППЛГ). Для того, чтобы определить, является цикл внешней границей или дыркой, рассмотрим самую левую вершину цикла [math]v[/math] (нижнюю из левых, в случае равенства). Напомним, что полуребра ориентированы так, что инцидентная им грань лежит левее полуребра. С учетом этого, оценим угол внутри грани между полуребрами, инцидентными [math]v[/math]. Если угол меньше [math]180^\circ[/math], то цикл является внешней границей, в противном случае – дыркой. Данное свойство выполняется для вершины [math]v[/math], но может не выполняться для остальных вершин.