Сортировка слиянием — различия между версиями
Ильнар (обсуждение | вклад) |
Ильнар (обсуждение | вклад) |
||
Строка 10: | Строка 10: | ||
# Иначе массив разбивается на две части, которые сортируются рекурсивно. | # Иначе массив разбивается на две части, которые сортируются рекурсивно. | ||
# После сортировки двух частей массива к ним применяется процедура слияния, которая по двум отсортированным частям получает исходный отсортированный массив. | # После сортировки двух частей массива к ним применяется процедура слияния, которая по двум отсортированным частям получает исходный отсортированный массив. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
===Слияние двух массивов=== | ===Слияние двух массивов=== | ||
У нас есть два массива <tex>a</tex> и <tex>b</tex> (фактически это будут две части одного массива, но для удобства будем писать, что у нас просто два массива). Нам надо получить массив <tex>c</tex> размером <tex>|a| + |b|</tex>. Для этого можно применить процедуру слияния. Эта процедура заключается в том, что мы сравниваем элементы массивов (начиная с начала) и меньший из них записываем в финальный. И затем, в массиве у которого оказался меньший элемент, переходим к следующему элементу и сравниваем теперь его. В конце, если один из массивов закончился, мы просто дописываем в финальный другой массив. После мы наш финальный массив записываем заместо двух исходных и получаем отсортированный участок. | У нас есть два массива <tex>a</tex> и <tex>b</tex> (фактически это будут две части одного массива, но для удобства будем писать, что у нас просто два массива). Нам надо получить массив <tex>c</tex> размером <tex>|a| + |b|</tex>. Для этого можно применить процедуру слияния. Эта процедура заключается в том, что мы сравниваем элементы массивов (начиная с начала) и меньший из них записываем в финальный. И затем, в массиве у которого оказался меньший элемент, переходим к следующему элементу и сравниваем теперь его. В конце, если один из массивов закончился, мы просто дописываем в финальный другой массив. После мы наш финальный массив записываем заместо двух исходных и получаем отсортированный участок. | ||
− | Множество отсортированных списков с операцией <tex>merge</tex> является [[Моноид|моноидом]], <tex>\langle assorted\ list, merge, \varnothing \rangle </tex>, где <tex>\varnothing</tex> {{---}} нейтральный элемент. | + | Множество отсортированных списков с операцией <tex>\mathrm{merge}</tex> является [[Моноид|моноидом]], <tex>\langle assorted\ list, \mathrm{merge}, \varnothing \rangle </tex>, где <tex>\varnothing</tex> {{---}} нейтральный элемент. |
Ниже приведён псевдокод процедуры слияния, который сливает две части массива <tex>a</tex> {{---}} <tex>[left; mid)</tex> и <tex>[mid; right)</tex> | Ниже приведён псевдокод процедуры слияния, который сливает две части массива <tex>a</tex> {{---}} <tex>[left; mid)</tex> и <tex>[mid; right)</tex> | ||
Строка 64: | Строка 56: | ||
===Итеративный алгоритм=== | ===Итеративный алгоритм=== | ||
[[Файл:Merge sort itearative.png|300px|right|thumb|Пример работы итеративного алгоритма сортировки слиянием]] | [[Файл:Merge sort itearative.png|300px|right|thumb|Пример работы итеративного алгоритма сортировки слиянием]] | ||
+ | При итеративном алгоритме не происходит рекурсивного запуска, что сохранит <tex>O(\log n)</tex> памяти, которое отдавалось для стека вызовов. | ||
<code style="display: inline-block"> | <code style="display: inline-block"> | ||
'''function''' mergeSortIterative(a : '''int[n]'''): | '''function''' mergeSortIterative(a : '''int[n]'''): | ||
Строка 77: | Строка 70: | ||
Осталось оценить <tex>k</tex>. Мы знаем, что <tex>2^k=n</tex>, а значит <tex>k=\log n</tex>. Уравнение примет вид <tex>T(n)=nT(1)+ \log n</tex> <tex>O(n)</tex>. Так как <tex>T(1)</tex> {{---}} константа, то <tex>T(n)=O(n)+\log n </tex> <tex>O(n)=O(n\log n)</tex>. | Осталось оценить <tex>k</tex>. Мы знаем, что <tex>2^k=n</tex>, а значит <tex>k=\log n</tex>. Уравнение примет вид <tex>T(n)=nT(1)+ \log n</tex> <tex>O(n)</tex>. Так как <tex>T(1)</tex> {{---}} константа, то <tex>T(n)=O(n)+\log n </tex> <tex>O(n)=O(n\log n)</tex>. | ||
+ | |||
+ | Достоинства: | ||
+ | * устойчивая. | ||
+ | Недостатки: | ||
+ | * при любых входных данных время работы {{---}} <tex>O(n\log{n})</tex>, | ||
+ | * требуется дополнительно <tex>O(n)</tex> памяти. | ||
+ | |||
==См. также== | ==См. также== | ||
* [[Сортировка кучей]] | * [[Сортировка кучей]] |
Версия 15:05, 23 мая 2015
Сортировка слиянием (англ. Merge sort) — алгоритм сортировки, предложенный Джоном фон Нейманом в 1945 году.
Это устойчивый алгоритм, использующий
дополнительной памяти и работающий за времени.Содержание
Принцип работы
Алгоритм использует принцип «разделяй и властвуй»: задача разбивается на подзадачи меньшего размера, которые решаются по отдельности, после чего их решения комбинируются для получения решения исходной задачи. Конкретно процедуру сортировки слиянием можно описать следующим образом:
- Если в рассматриваемом массиве один элемент, то он уже отсортирован — алгоритм завершает работу.
- Иначе массив разбивается на две части, которые сортируются рекурсивно.
- После сортировки двух частей массива к ним применяется процедура слияния, которая по двум отсортированным частям получает исходный отсортированный массив.
Слияние двух массивов
У нас есть два массива
и (фактически это будут две части одного массива, но для удобства будем писать, что у нас просто два массива). Нам надо получить массив размером . Для этого можно применить процедуру слияния. Эта процедура заключается в том, что мы сравниваем элементы массивов (начиная с начала) и меньший из них записываем в финальный. И затем, в массиве у которого оказался меньший элемент, переходим к следующему элементу и сравниваем теперь его. В конце, если один из массивов закончился, мы просто дописываем в финальный другой массив. После мы наш финальный массив записываем заместо двух исходных и получаем отсортированный участок.Множество отсортированных списков с операцией моноидом, , где — нейтральный элемент.
являетсяНиже приведён псевдокод процедуры слияния, который сливает две части массива
— иfunction merge(a : int[n]; left, mid, right : int): it1 = 0 it2 = 0 result : int[right - left] while left + it1 < mid and mid + it2 < right if a[left + it1] < a[mid + it2] result[it1 + it2] = a[left + it1] it1 += 1 else result[it1 + it2] = a[mid + it2] it2 += 1 while left + it1 < mid result[it1 + it2] = a[left + it1] it1 += 1 while mid + it2 < right result[it1 + it2] = a[mid + it2] it2 += 1 for i = 0 to it1 + it2 a[left + i] = result[i]
Рекурсивный алгоритм
Функция сортирует подотрезок массива с индексами в полуинтервале
function mergeSortRecursive(a : int[n]; left, right : int): if left + 1 >= right return mid = (left + right) / 2 mergeSortRecursive(a, left, mid) mergeSortRecursive(a, mid, right) merge(a, left, mid, right)
Итеративный алгоритм
При итеративном алгоритме не происходит рекурсивного запуска, что сохранит
function mergeSortIterative(a : int[n]): for i = 1 to n, i *= 2 for j = 0 to n - i, j += 2 * i merge(a, j, j + i, min(j + 2 * i, n))
Время работы
Чтобы оценить время работы этого алгоритма, составим рекуррентное соотношение. Пускай
— время, необходимое на то, чтобы слить два массива. Распишем это соотношение:
.
Осталось оценить
. Мы знаем, что , а значит . Уравнение примет вид . Так как — константа, то .Достоинства:
- устойчивая.
Недостатки:
- при любых входных данных время работы — ,
- требуется дополнительно памяти.