Дерево Фенвика — различия между версиями
Строка 17: | Строка 17: | ||
Для изменения величины <tex>a_{k}</tex> необходимо изменить элементы дерева <tex>T_{i}</tex>, для которых верно неравенство <tex>F(i) \leqslant k \leqslant i</tex> . | Для изменения величины <tex>a_{k}</tex> необходимо изменить элементы дерева <tex>T_{i}</tex>, для которых верно неравенство <tex>F(i) \leqslant k \leqslant i</tex> . | ||
|proof= | |proof= | ||
− | <tex> T_i =\sum\limits_{k = F(i)}^{i} a_k , i = 0 .. n - 1 \Rightarrow</tex> необходимо менять те <tex> | + | <tex> T_i =\sum\limits_{k = F(i)}^{i} a_k , i = 0 .. n - 1 \Rightarrow</tex> необходимо менять те <tex>T_i</tex>, для которых <tex>a_{k}</tex> попадает в <tex>T_i \Rightarrow</tex> необходимые <tex> i </tex> удовлетворяют условию <tex>F(i) \leqslant k \leqslant i</tex>. |
}} | }} | ||
Строка 46: | Строка 46: | ||
i = i | (i + 1) | i = i | (i + 1) | ||
− | == Запрос получения | + | == Запрос получения значения функции на префиксе == |
− | В качестве бинарной операции <tex> | + | Пусть существует некоторая бинарная операция <tex>\circ</tex>. Чтобы получить значение на отрезке <tex>[i, j]</tex>, нужно провести операцию, обратную к <tex>\circ</tex>, над значениями на отрезках <tex>[0, j]</tex> и <tex>[0, i - 1]</tex>. |
− | Обозначим <tex> | + | |
+ | В качестве бинарной операции <tex> \circ </tex> рассмотрим операцию сложения. <br/> | ||
+ | Обозначим <tex> \circ_i = \mathrm sum(i) = \sum\limits_{k = 0}^{i} a_k </tex>. Тогда <tex> \mathrm sum(i, j) = \sum\limits_{k = i}^{j} a_k = \circ_j - \circ_{i - 1} </tex>. | ||
{{Лемма | {{Лемма |
Версия 20:12, 26 мая 2015
Дерево Фе́нвика (англ. Binary indexed tree) — структура данных, требующая
памяти и позволяющая эффективно (за ) выполнять следующие операции:- изменять значение любого элемента в массиве,
- выполнять некоторую ассоциативную, коммутативную, обратимую операцию на отрезке .
Впервые описано Питером Фенвиком в 1994 году.
Пусть дан массив
. Деревом Фенвика будем называть массив из элементов: , где и — некоторая функция, от выбора которой зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать операции вставки и изменения элемента за время . Она задается простой формулой: , где — это операция логического . При числа и его значения, увеличенного на единицу, мы получаем это число без последних подряд идущих единиц.Эту функцию можно вычислять по другой формуле:
где — количество подряд идущих единиц в конце бинарной записи числа . Оба варианта равносильны, так как функция, заданная какой-либо из этих формул, заменяет все подряд идущие единицы в конце числа на нули.Содержание
Запрос изменения элемента
Нам надо научиться быстро изменять частичные суммы в зависимости от того, как изменяются элементы. Рассмотрим как изменяется массив
при изменении элемента .Лемма: |
Для изменения величины необходимо изменить элементы дерева , для которых верно неравенство . |
Доказательство: |
необходимо менять те , для которых попадает в необходимые удовлетворяют условию . |
Лемма: |
Все такие удовлетворяют равенству , где — это операция побитового логического . |
Доказательство: |
Первый элемент последовательности само | . Для него выполняется равенство, так как . По формуле мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как осталось прежним или уменьшилось, а увеличилось. Можем заметить, что если количество единиц в конце не будет совпадать с , то формула нарушит неравенство, потому что либо само будет меньше, чем , либо станет больше, чем . Таким образом, перебраны будут только нужные элементы
Все
мы можем получить следующим образом : . Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию . Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу.
Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа .
Напишем функцию, которая будет изменять элемент на , и при этом меняет соответствующие частичные суммы.
function modify(i, d): while i < N t[i] += d i = i | (i + 1)
Запрос получения значения функции на префиксе
Пусть существует некоторая бинарная операция
. Чтобы получить значение на отрезке , нужно провести операцию, обратную к , над значениями на отрезках и .В качестве бинарной операции
Обозначим . Тогда .
Лемма: |
входит в сумму для , если . |
Для доказательства леммы рассмотрим битовую запись следующих чисел:
Реализация
Приведем код функции
:int sum(i): result = 0; while i >= 0 result += t[i] i = f(i) - 1 return result
Преимущества и недостатки дерева Фенвика
Главными преимуществами данной конструкции являются простота реализации и быстрота ответов на запросы за
. Также дерево Фенвика позволяет быстро изменять значения в массиве и находить некоторые функции от элементов массива. Недостатком является то, что при изменении одного элемента исходного массива, приходится пересчитывать частичные суммы, а это затратно по времени.