Вещественные числа — различия между версиями
Rybak (обсуждение | вклад) (→Целые числа) |
Rybak (обсуждение | вклад) (→Дополнение множества рациональных чисел) |
||
Строка 50: | Строка 50: | ||
{{Определение | {{Определение | ||
− | |definition= Запись <tex>A < B</tex> означает, что <tex> \forall a \in A, b \in B \Rightarrow a < b </tex> | + | |definition= Запись <tex>A < B</tex> означает, что <tex> \forall a \in A, \forall b \in B \Rightarrow a < b </tex>. |
}} | }} | ||
− | Аналогично определяются записи типа <tex> A \le B </tex>, ... | + | Аналогично определяются записи типа <tex> A \le B </tex>, и т. д. и т. п. |
− | Если <tex> B = \{b\} | + | Если <tex> B = \{b\}</tex>, то запись <tex> A < b </tex> означает, что <tex> A < B </tex>. |
=== Неполнота числовой оси === | === Неполнота числовой оси === | ||
Строка 105: | Строка 105: | ||
# Выполнение аксиомы непрерывности: | # Выполнение аксиомы непрерывности: | ||
− | Пусть <tex> | + | Пусть <tex>A </tex> и <tex>B </tex> — 2 произвольных подмножества из пополненного множества рациональных чисел, и <tex> A \le B </tex>, то в пополненном множестве <tex> \exists d: A \le d \le B </tex> |
− | Получим множество, называемое множеством ''вещественных'' чисел — <tex> \mathbb R, \, \mathbb Q \subset \mathbb R </tex> | + | Получим множество, называемое множеством '''''вещественных''''' чисел — <tex> \mathbb R, \, \mathbb Q \subset \mathbb R </tex>. |
Из разбора ясно, что мы стоим на аксиоматических позициях. | Из разбора ясно, что мы стоим на аксиоматических позициях. | ||
Строка 113: | Строка 113: | ||
Для анализа важно то, что для <tex> \mathbb R </tex> выполняется аксиома непрерывности. | Для анализа важно то, что для <tex> \mathbb R </tex> выполняется аксиома непрерывности. | ||
− | + | Существует несколько моделей <tex> \mathbb R </tex> : | |
# Модель Дедекинда | # Модель Дедекинда | ||
# Модель Вейерштрасса | # Модель Вейерштрасса | ||
Строка 124: | Строка 124: | ||
Для нас этот важен тем, что он гарантирует единственность пополнения <tex> \mathbb Q </tex> для выполнения аксиомы непрерывности. | Для нас этот важен тем, что он гарантирует единственность пополнения <tex> \mathbb Q </tex> для выполнения аксиомы непрерывности. | ||
− | Любое такое пополнение приводит к множествам, изоморфным друг другу. | + | Любое такое пополнение, независимо от модели, приводит к множествам, изоморфным друг другу. |
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] |
Версия 07:45, 18 ноября 2010
Лекция от 13 сентября 2010.
Содержание
Натуральные числа
Множество натуральных чисел
определяется следующим образом:За числом
в натуральном ряде непосредственно следует , между и других нет.Гильберт:
Натуральные числа - первичные элементы, природа которых не обсуждается, все остальное базируется на этом.
Целые числа
Множество целых чисел
. ТакжеРациональные числа
Множество рациональных чисел
Множество рациональных чисел упорядочено, то есть всегда выполняется только один из трех случаев:
илиМодуль
Определение: |
— модуль или абсолютная величина числа x |
Свойства модуля:
Аксиома Архимеда
В множестве
выполняется аксиома Архимеда:
Дополнение множества рациональных чисел
Пусть
— два числовых множества.
Определение: |
Запись | означает, что .
Аналогично определяются записи типа , и т. д. и т. п.
Если
, то запись означает, что .Неполнота числовой оси
Утверждение: |
Пусть
Тогда |
Допустим, что такое d существует и . Тогда возможны три случая:
— невозможно, доказывается через несократимость дроби 2 - простое, значит делится без остатка на , противоречие. 2 случая: либо , либо .1) Для всех рациональных
; Для такого Для случая , противоречие. доказывается аналогично. |
Этим утверждением обнаруживается серьезный пробел во множестве рациональных чисел. Для его ликвидации вводятся некоторые объекты. При таком пополнении должны выполняться:
- 4 арифметических действия с сохранением законов арифметики.
- Сохранение упорядоченности.
- Выполнение аксиомы непрерывности:
Пусть
и — 2 произвольных подмножества из пополненного множества рациональных чисел, и , то в пополненном множествеПолучим множество, называемое множеством вещественных чисел —
.Из разбора ясно, что мы стоим на аксиоматических позициях.
Для анализа важно то, что для
выполняется аксиома непрерывности.Существует несколько моделей
:- Модель Дедекинда
- Модель Вейерштрасса
- Модель Кантора
Базируясь на аксиоме Архимеда и непрерывности, можно установить, что
всюду плотно на :В любом вещественном интервале
найдется рациональное число.Для нас этот важен тем, что он гарантирует единственность пополнения
для выполнения аксиомы непрерывности.Любое такое пополнение, независимо от модели, приводит к множествам, изоморфным друг другу.