|
|
Строка 34: |
Строка 34: |
| |statement=Пусть <tex>f(x,y)</tex> удовлетворяет условию Липшица и <tex>f(x,y) \in C(D)</tex>, тогда существует единственное решение задачи Коши | | |statement=Пусть <tex>f(x,y)</tex> удовлетворяет условию Липшица и <tex>f(x,y) \in C(D)</tex>, тогда существует единственное решение задачи Коши |
| <tex>y=y(x), \:\: y \in C(\left | x-x_{0} \right | \leqslant h)</tex>, где <tex>h = min(a, \frac{b}{M})</tex>. | | <tex>y=y(x), \:\: y \in C(\left | x-x_{0} \right | \leqslant h)</tex>, где <tex>h = min(a, \frac{b}{M})</tex>. |
− | |proof=Мамой клянусь. А теперь попытаемся доказать. <br> | + | |proof=Переформулируем задачу Коши следующим образом: <tex>y(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},y)d\bar{x}</tex><br> |
− | Переформулируем задачу Коши следующим образом: <tex>y(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},y)d\bar{x}</tex><br> | |
| Будем строить решение задачи Коши итеративным методом: <tex>y_{n}(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},y_{n-1}(\bar{x}))d\bar{x}</tex>. Далее возможны два случая:<br> 1) <tex>y_{n}(x) \equiv y_{0} \:\: \Rightarrow \:\: f(x, y_{0}) = 0 \:\: \Rightarrow \:\: y_{0} -</tex> решение.<br> | | Будем строить решение задачи Коши итеративным методом: <tex>y_{n}(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},y_{n-1}(\bar{x}))d\bar{x}</tex>. Далее возможны два случая:<br> 1) <tex>y_{n}(x) \equiv y_{0} \:\: \Rightarrow \:\: f(x, y_{0}) = 0 \:\: \Rightarrow \:\: y_{0} -</tex> решение.<br> |
| 2) <tex>f(x, y_{0}) \neq 0:</tex> предварительно докажем, что:<br> | | 2) <tex>f(x, y_{0}) \neq 0:</tex> предварительно докажем, что:<br> |
Строка 50: |
Строка 49: |
| <tex>...</tex><br> | | <tex>...</tex><br> |
| <tex>\left | y_{n} - y_{n - 1} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{n - 1}) - f(\bar{x}, y_{n - 2})\right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{n - 1} - y_{n - 2}\right |d\bar{x} \leqslant </tex> <tex> l \int_{x_{0}}^{x}\frac{M}{l} \frac{(l \left | \bar{x} - x_{0} \right |)^{n - 1}}{(n - 1)!}d\bar{x} = \frac{M}{l} \frac{(l\left | x - x_{0} \right |)^{n}}{n!} \leqslant \frac{M}{l} \frac{(lh)^{n}}{n!}</tex><br> | | <tex>\left | y_{n} - y_{n - 1} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{n - 1}) - f(\bar{x}, y_{n - 2})\right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{n - 1} - y_{n - 2}\right |d\bar{x} \leqslant </tex> <tex> l \int_{x_{0}}^{x}\frac{M}{l} \frac{(l \left | \bar{x} - x_{0} \right |)^{n - 1}}{(n - 1)!}d\bar{x} = \frac{M}{l} \frac{(l\left | x - x_{0} \right |)^{n}}{n!} \leqslant \frac{M}{l} \frac{(lh)^{n}}{n!}</tex><br> |
− | Теперь проверим сходимость полученного числового ряда: <tex> \frac{M}{l} (lh + \frac{(lh)^{2}}{2!} + \frac{(lh)^{3})}{3!} + \dotsb) = \frac{M}{l} (e^{lh} - 1).</tex> Видим, что числовой ряд сходистя, значит исходный функциональный ряд сходится равномерно.}} | + | Теперь проверим сходимость полученного числового ряда: <tex> \frac{M}{l} (lh + \frac{(lh)^{2}}{2!} + \frac{(lh)^{3})}{3!} + \dotsb) = \frac{M}{l} (e^{lh} - 1).</tex> Видим, что числовой ряд сходистя, значит исходный функциональный ряд сходится равномерно.<br> |
| + | d), e) Мамой клянусь.}} |
Дифференциальные уравнения
Определения
Определение: |
Соотношение вида [math]F(x, y(x), {y}'(x), ... , y^{(n)}(x)) = 0\:(1)[/math] называется обыкновенным дифференциальным уравнением (ОДУ). |
Определение: |
Порядок наивысшей производной входящей в уравнение называется порядком уравнения. |
Определение: |
[math]F(x, y(x), {y}'(x)) = 0\:(2)\: - [/math] дифференциальное уравнение 1-го порядка |
Определение: |
Решением дифференциального уравнения [math](2)[/math] называется функция [math]y(x) \in C(a,b):[/math] [math]F(x, y(x), {y}'(x)) \equiv 0[/math] |
Определение: |
[math]\frac{dy}{dx}=f(x,y)\:(3) - [/math] уравнение в нормальной форме. |
Определение: |
Изоклиной ДУ[math](3)[/math] называется кривая определяемая равенством [math]f(x,y)=k[/math], где [math]k - const , tg\alpha = k[/math]. |
Задача Коши
Определение: |
Задача нахождения решения дифференциального уравнения [math]\frac{\mathrm{d} y}{\mathrm{d} x} = f(x, y)[/math], которое удовлетворяет следующим условиям: [math]\left\{\begin{matrix}
\frac{\mathrm{d} y}{\mathrm{d} x} = f(x, y) \\ y = y_{0}, \:\: \mathrm{if} \:\: x = x_{0}
\end{matrix}\right.[/math] называется задачей Коши (начальной задачей) |
в некоторых случаях удается упростить решение задачи Коши наложив ограничения на [math]f(x,y):[/math]
[math]f(x,y) \in C(D), \:\: D = \left\{\begin{matrix}
\left | x-x_{0} \right | \leqslant a \\ \left | y-y_{0} \right | \leqslant b
\end{matrix}\right.[/math]
[math]\Rightarrow \:\: \left | f(x, y) \right | \leqslant M, \:\: M \gt 0[/math]
Определение: |
условие Липшица: [math]\left | f(x,\bar{y}) - f(x, \bar{\bar{y}}) \right | \leq l \left | \bar{\bar{y}} - \bar{y} \right |, \:\: \forall (x,\bar{y}), (x,\bar{\bar{y}}) \in D[/math] для некоторой константы [math]l \gt 0[/math] |
Очевидно, условие Липшица выполняется при условии [math]\left | \frac{\partial f}{\partial y} \right | \in C(D)[/math].
Теорема (Пикар): |
Пусть [math]f(x,y)[/math] удовлетворяет условию Липшица и [math]f(x,y) \in C(D)[/math], тогда существует единственное решение задачи Коши
[math]y=y(x), \:\: y \in C(\left | x-x_{0} \right | \leqslant h)[/math], где [math]h = min(a, \frac{b}{M})[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Переформулируем задачу Коши следующим образом: [math]y(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},y)d\bar{x}[/math]
Будем строить решение задачи Коши итеративным методом: [math]y_{n}(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},y_{n-1}(\bar{x}))d\bar{x}[/math]. Далее возможны два случая: 1) [math]y_{n}(x) \equiv y_{0} \:\: \Rightarrow \:\: f(x, y_{0}) = 0 \:\: \Rightarrow \:\: y_{0} -[/math] решение.
2) [math]f(x, y_{0}) \neq 0:[/math] предварительно докажем, что:
[math]a) \:\:\: y_{n}(x) \in C(\left | x - x_{0} \right | \leqslant h)[/math]
[math]b) \:\:\: \left | y_{n}(x) - y_{0} \right | \leqslant b, \:\: \mathrm{if} \:\: \left | x - x_{0} \right | \leqslant h[/math]
[math]c) \:\:\: y_{n}(x) \rightrightarrows y(x) \:\:[/math]
[math]d) \:\:\: y(x) \in C(\left | x - x_{0} \right | \leqslant h)[/math]
[math]e) \:\:\: \left | y(x) - y_{0} \right | \leqslant b, \:\: \mathrm{if} \:\: \left | x - x_{0} \right | \leqslant h[/math]
a), b) База: [math] \:\: y_{1}(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},y_{0}(\bar{x}))d\bar{x} \: .[/math] По теореме Барроу [math]y_{1}(x) \: - [/math] непрерывна при [math]\left | x - x_{0} \right | \leqslant a.[/math] [math]\left | y_{1}(x) - y_{0} \right | \leqslant \left | \int_{x_{0}}^{x} f(\bar{x}, y_{0})d\bar{x} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{0})\right |d\bar{x} \leqslant M \left | x - x_{0} \right | \leqslant Mh \leqslant b.[/math] переход доказывается аналогично.
c) Для доказательства равномерной сходимости воспользуемся признаком Вейерштрасса. Составим функциональный ряд [math]y_{0} + (y_{1} - y_{0}) + (y_{2} - y_{1}) + \dotsb[/math] и замажорируем его слагаемое слагаемым сходящейся числовой последовательности.
[math]\left | y_{1} - y_{0} \right | \leqslant M \left | x - x_{0} \right | \leqslant Mh[/math]
[math]\left | y_{2} - y_{1} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{1}) - f(\bar{x}, y_{0}) \right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{1} - y_{0}\right |d\bar{x} \leqslant [/math] [math]lM \int_{x_{0}}^{x}\left | \bar{x} - x_{0} \right | d\bar{x} = lM \frac{\left | x - x_{0} \right |^{2}}{2} \leqslant \frac{M}{l} \frac{(lh)^{2}}{2}[/math]
[math]\left | y_{3} - y_{2}\right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{2}) - f(\bar{x}, y_{1})\right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{2} - y_{1}\right |d\bar{x} \leqslant l \int_{x_{0}}^{x}lM \frac{\left | \bar{x} - x_{0} \right |^{2}}{2}d\bar{x} =[/math] [math] \frac{M}{l} \frac{(l\left | x - x_{0} \right |)^{3}}{6} \leqslant \frac{M}{l} \frac{(lh)^{3}}{3!}[/math]
[math]...[/math]
[math]\left | y_{n} - y_{n - 1} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{n - 1}) - f(\bar{x}, y_{n - 2})\right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{n - 1} - y_{n - 2}\right |d\bar{x} \leqslant [/math] [math] l \int_{x_{0}}^{x}\frac{M}{l} \frac{(l \left | \bar{x} - x_{0} \right |)^{n - 1}}{(n - 1)!}d\bar{x} = \frac{M}{l} \frac{(l\left | x - x_{0} \right |)^{n}}{n!} \leqslant \frac{M}{l} \frac{(lh)^{n}}{n!}[/math]
Теперь проверим сходимость полученного числового ряда: [math] \frac{M}{l} (lh + \frac{(lh)^{2}}{2!} + \frac{(lh)^{3})}{3!} + \dotsb) = \frac{M}{l} (e^{lh} - 1).[/math] Видим, что числовой ряд сходистя, значит исходный функциональный ряд сходится равномерно.
d), e) Мамой клянусь. |
[math]\triangleleft[/math] |