Лемма о рукопожатиях — различия между версиями
(→Ориентированный граф) |
(→Регулярный граф) |
||
| Строка 47: | Строка 47: | ||
}} | }} | ||
[[Файл:reg_grap.png|thumb|300px|right|Регулярный граф с <tex>\frac{k\cdot n}{2} = \frac{3\cdot 6}{2}=9 </tex> ребрами ]] | [[Файл:reg_grap.png|thumb|300px|right|Регулярный граф с <tex>\frac{k\cdot n}{2} = \frac{3\cdot 6}{2}=9 </tex> ребрами ]] | ||
| − | В регулярном графе с <tex> n </tex> вершинами ровно <tex>\frac{k\cdot n}{2} </tex> ребер. | + | В регулярном графе с <tex> n </tex> вершинами ровно <tex dpi=150>\frac{k\cdot n}{2} </tex> ребер. |
'''Следствие.''' | '''Следствие.''' | ||
| Строка 55: | Строка 55: | ||
'''Доказательство.''' | '''Доказательство.''' | ||
| − | Действительно, так как степень каждой вершины нечетна, то число вершин в графе четно(так сумма степеней всех вершин четна). Пусть <tex> n = 2\cdot r </tex>, то равенство принимает вид <tex>|E| =\frac{k\cdot n}{2} = \frac{2\cdot k\cdot r}{2}=k\cdot r </tex>, то есть количество ребер кратно <tex> k</tex>. | + | Действительно, так как степень каждой вершины нечетна, то число вершин в графе четно(так сумма степеней всех вершин четна). Пусть <tex> n = 2\cdot r </tex>, то равенство принимает вид <tex dpi=150>|E| =\frac{k\cdot n}{2} = \frac{2\cdot k\cdot r}{2}=k\cdot r </tex>, то есть количество ребер кратно <tex> k</tex>. |
== Источники информации == | == Источники информации == | ||
Версия 17:31, 16 сентября 2015
Содержание
Лемма о рукопожатиях
Неориентированный граф
| Лемма: |
Сумма степеней всех вершин графа (или мультиграфа без петель) — четное число, равное удвоенному числу ребер:
|
| Доказательство: |
| Возьмем пустой граф. Сумма степеней вершин такого графа равна нулю. При добавлении ребра, связывающего любые две вершины, сумма всех степеней увеличивается на 2 единицы. Таким образом, сумма всех степеней вершин четна и равна удвоенному числу ребер. |
Например, для следующего графа выполнено:
Следствие 1. В любом графе число вершин нечетной степени четно.
Следствие 2. Число ребер в полном графе .
Ориентированный граф
| Лемма: |
Сумма входящих и исходящих степеней всех вершин ориентированного графа — четное число, равное удвоенному числу ребер:
|
| Доказательство: |
|
Аналогично доказательству леммы о рукопожатиях неориентированном графе. То есть возьмем пустой граф и будем добавлять в него ребра. При этом каждое добавление ребра увеличивает на единицу сумму входящих и на единицу сумму исходящих степеней. Таким образом, сумма входящих и исходящих степеней всех вершин ориентированного графа четна и равна удвоенному числу ребер. |
Бесконечный граф
В бесконечном графе лемма не работает, даже в случае с конечным числом вершин нечетной степени. Покажем это на примере.
При выборе бесконечного пути из вершины (см. рисунок справа) имеем путь, в котором все вершины кроме стартовой имеют четную степень, что противоречит следствию из леммы.
Регулярный граф
| Определение: |
| Граф называется регулярным, если степени всех его вершин равны. |
В регулярном графе с вершинами ровно ребер.
Следствие.
Если степень каждой вершины нечетна и равна , то количество ребер кратно .
Доказательство.
Действительно, так как степень каждой вершины нечетна, то число вершин в графе четно(так сумма степеней всех вершин четна). Пусть , то равенство принимает вид , то есть количество ребер кратно .
Источники информации
- Lecture Notes on Graph Theory By Tero Harju, Department of Mathematics University of Turku, 2011 — с. 7-8
- Handshaking lemma — Wikipedia



