Отношение рёберной двусвязности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 2: Строка 2:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Две вершины <tex>u</tex> и <tex> v</tex> [[Основные определения теории графов|графа]] <tex>G</tex> называются '''реберно двусвязными''' ''(edge biconnected)'', если между этими вершинами существуют два реберно непересекающихся пути.
+
Две вершины <tex>u</tex> и <tex> v</tex> [[Основные определения теории графов|графа]] <tex>G</tex> называются '''реберно двусвязными''' ''(англ. edge biconnected)'', если между этими вершинами существуют два реберно непересекающихся пути.
 
}}
 
}}
  
Строка 32: Строка 32:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
'''Компонентами реберной двусвязности''' ''(costal doubly-linked components)'' графа называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности.
+
'''Компонентами реберной двусвязности''' ''(англ. costal doubly-linked components)'' графа называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности.
 
}}
 
}}
  

Версия 20:41, 5 ноября 2015

Реберная двусвязность

Определение:
Две вершины [math]u[/math] и [math] v[/math] графа [math]G[/math] называются реберно двусвязными (англ. edge biconnected), если между этими вершинами существуют два реберно непересекающихся пути.


Теорема:
Отношение реберной двусвязности является отношением эквивалентности на вершинах.
Доказательство:
[math]\triangleright[/math]
Пусть [math]R[/math] — отношение реберной двусвязности.
К доказательству транзитивности.

Рефлексивность: [math](u, u)\in R. [/math] (Очевидно)

Симметричность: [math](u, v)\in R \Rightarrow (v, u)\in R. [/math] (Очевидно)

Транзитивность: [math](u, v)\in R [/math] и [math](v, w)\in R \Rightarrow (u, w)\in R. [/math]

Доказательство: Пусть из [math] w [/math] в [math] v [/math] есть два реберно непересекающихся пути, [math] P_1 [/math] и [math] P_2 [/math] соответственно. Обозначим за [math] C [/math] объединение двух реберно непересекающихся путей из [math] u [/math] в [math] v [/math]. [math] C [/math] будет реберно-простым циклом. Пусть вершины [math]a[/math] и [math]b[/math] — первые со стороны [math]w[/math] вершины на пересечении [math] P_1 [/math] и [math] P_2 [/math] с [math] C [/math] соответственно.

Рассмотрим два пути [math] wau [/math] и [math] wbu [/math], такие, что части [math] au [/math] и [math] bu [/math] идут в разные стороны по циклу [math] C [/math]. Наличие двух таких реберно непересекающихся путей очевидно, а значит [math] u [/math] и [math] w [/math] реберно двусвязны.
[math]\triangleleft[/math]

Компоненты реберной двусвязности

Определение:
Компонентами реберной двусвязности (англ. costal doubly-linked components) графа называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности.


См. также

Источники информации