Линейные уравнения высших порядков — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Фундаментальная система решений ЛОДУ)
Строка 16: Строка 16:
 
тогда  <tex>y_m(x) = -\frac{\alpha_1}{\alpha_m}y_1 - \frac{\alpha_2}{\alpha_m}y_2 - \dots - \frac{\alpha_{m - 1}}{\alpha_m}y_{m - 1}- \frac{\alpha_{m + 1}}{\alpha_m}y_{m + 1} - \dots - \frac{\alpha_n}{\alpha_m}y_n</tex>, где <tex>\alpha_m \neq 0</tex> }}
 
тогда  <tex>y_m(x) = -\frac{\alpha_1}{\alpha_m}y_1 - \frac{\alpha_2}{\alpha_m}y_2 - \dots - \frac{\alpha_{m - 1}}{\alpha_m}y_{m - 1}- \frac{\alpha_{m + 1}}{\alpha_m}y_{m + 1} - \dots - \frac{\alpha_n}{\alpha_m}y_n</tex>, где <tex>\alpha_m \neq 0</tex> }}
 
==Фундаментальная система решений ЛОДУ==
 
==Фундаментальная система решений ЛОДУ==
 +
{{Определение|definition=Совокупность из n ЛНЗ решений в интервале (a, b) называется фундаментальной системой решений ЛОДУ.}}
 +
{{Определение|definition=Определитель Вронского набора  <tex>y_1(x), y_2(x), \dots, y_n(x)</tex> имеет вид:
 +
<br>
 +
<tex>
 +
W(x) =\begin{vmatrix}
 +
y_1(x)  & y_2(x) & \dots & y_n(x) \\
 +
y_1'(x) & y_2'(x)& \dots &y_n'(x) \\
 +
\dots &  \dots  & \dots & \dots\\
 +
y_1^{(n - 1)}(x) &y_2^{(n - 1)}(x)  & \dots  & y_n^{(n -1)}(x)
 +
\end{vmatrix}</tex>}}

Версия 03:07, 30 ноября 2015

Определение

Определение:
[math]y^{(n)} + p_1(x)y^{(n - 1)} + \dots + p_{n - 1}(x)y' + p_n(x)y = f(x)[/math] — называется линейным уравнением n-ного порядка.


Определение:
если [math]f(x)\equiv 0[/math] то уравнение называется однородным, иначе - неоднородным.

пусть [math]\alpha(y) = y^{(n)} + p_1(x)y^{(n - 1)} + \dots + p_{n - 1}(x)y' + p_n(x)y[/math], тогда уравнение имеет вид [math]\alpha(y) = f(x)[/math].
[math]\alpha(y)[/math] называется линейным дифференциальным оператором n-ного порядка. Очевидно, что [math]\alpha (\Sigma_{k = 0}^{n} C_ky_k) = \Sigma_{k = 0}^{n} C_k\alpha(y_k)[/math].

Свойства решения однородного уравнения

Если [math]y_1(x), \dots, y_n(x)[/math] — решения ЛОДУ (линейного однородного дифференциального уравнения), то [math]y(x) = \Sigma_{k = 0}^{n} C_ky_k(x)[/math] — решение. Отсюда делаем вывод, что множество решений ЛОДУ - это линейное пространство.

Определение:
функции [math]y_1(x), \dots, y_n(x)[/math] называются линейно зависимыми(ЛЗ), если

[math]\alpha_1y_1(x) + \alpha_2y_2(x) + \dots + \alpha_ny_n(x) \equiv 0 \Leftrightarrow \Sigma_{k = 0}^{n} \alpha_k^2 = 0[/math].

иначе они называются линейно независимыми(ЛНЗ).
Утверждение:
если [math]y_1(x),\dots, y_n(x)[/math] - ЛЗ в промежутке (a, b) , то одна из них представляется линейной комбинацией остальных.
[math]\triangleright[/math]

пусть [math]\alpha_1y_1(x) + \alpha_2y_2(x) + \dots + \alpha_ny_n(x) = 0[/math] при некотором наборе [math]\alpha_i[/math] , среди которых хотя бы одна отлична от нуля.

тогда [math]y_m(x) = -\frac{\alpha_1}{\alpha_m}y_1 - \frac{\alpha_2}{\alpha_m}y_2 - \dots - \frac{\alpha_{m - 1}}{\alpha_m}y_{m - 1}- \frac{\alpha_{m + 1}}{\alpha_m}y_{m + 1} - \dots - \frac{\alpha_n}{\alpha_m}y_n[/math], где [math]\alpha_m \neq 0[/math]
[math]\triangleleft[/math]

Фундаментальная система решений ЛОДУ

Определение:
Совокупность из n ЛНЗ решений в интервале (a, b) называется фундаментальной системой решений ЛОДУ.


Определение:
Определитель Вронского набора [math]y_1(x), y_2(x), \dots, y_n(x)[/math] имеет вид:


[math] W(x) =\begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y_1'(x) & y_2'(x)& \dots &y_n'(x) \\ \dots & \dots & \dots & \dots\\ y_1^{(n - 1)}(x) &y_2^{(n - 1)}(x) & \dots & y_n^{(n -1)}(x) \end{vmatrix}[/math]