Факторизация графов — различия между версиями
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
− | |definition ='''Фактором ''' ''(англ. factor)'' графа <tex>G</tex> называется остовный подграф графа <tex>G</tex>, не являющийся вполне несвязным. | + | |definition ='''Фактором ''' ''(англ. factor)'' [[Основные определения теории графов|графа]] <tex>G</tex> называется остовный подграф графа <tex>G</tex>, не являющийся вполне несвязным. |
}} | }} | ||
Строка 12: | Строка 12: | ||
== 1-факторизация == | == 1-факторизация == | ||
− | |||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
Полный граф <tex>K_{2n}</tex> <tex>1</tex>-факторизуем. | Полный граф <tex>K_{2n}</tex> <tex>1</tex>-факторизуем. | ||
|proof= | |proof= | ||
+ | [[Файл: Факторизация K6.png|thumb|360px|right|<tex>1</tex>-факторизация графа <tex>K_6</tex>]] | ||
Нам нужно только указать разбиение множества рёбер <tex>E</tex> графа на <tex>(2n - 1)</tex> <tex>1</tex>-фактора. Для этого обозначим вершины графа <tex>G</tex> через <tex>v_1, v_2, \dots, v_{2n}</tex> и определим множества рёбер <tex>X_i = (v_iv_{2n}) \cup (v_{i - j}v_{i + j}; j = 1, 2, \dots, n - 1)</tex>, <tex>i = 1, 2, \dots, 2n - 1 </tex>, где каждый из индексов <tex>i - j</tex> и <tex>i + j</tex> является одним из чисел <tex>1, 2, \dots, 2n - 1</tex>; здесь сумма и разность берутся по модулю <tex>2n - 1</tex>. Легко видеть, что набор <tex>X_i</tex> даёт необходимое разбиение множества <tex>X</tex>, а сумма подграфов <tex>G_i</tex>, порождённых множествами <tex>X_i</tex>, является <tex>1</tex>-факторизацией графа <tex>K_{2n}</tex>. | Нам нужно только указать разбиение множества рёбер <tex>E</tex> графа на <tex>(2n - 1)</tex> <tex>1</tex>-фактора. Для этого обозначим вершины графа <tex>G</tex> через <tex>v_1, v_2, \dots, v_{2n}</tex> и определим множества рёбер <tex>X_i = (v_iv_{2n}) \cup (v_{i - j}v_{i + j}; j = 1, 2, \dots, n - 1)</tex>, <tex>i = 1, 2, \dots, 2n - 1 </tex>, где каждый из индексов <tex>i - j</tex> и <tex>i + j</tex> является одним из чисел <tex>1, 2, \dots, 2n - 1</tex>; здесь сумма и разность берутся по модулю <tex>2n - 1</tex>. Легко видеть, что набор <tex>X_i</tex> даёт необходимое разбиение множества <tex>X</tex>, а сумма подграфов <tex>G_i</tex>, порождённых множествами <tex>X_i</tex>, является <tex>1</tex>-факторизацией графа <tex>K_{2n}</tex>. | ||
}} | }} | ||
− | |||
== 2-факторизация == | == 2-факторизация == | ||
Строка 25: | Строка 24: | ||
{{Теорема | {{Теорема | ||
|statement = | |statement = | ||
− | Граф <tex>K_{2n+1}</tex> можно представить в виде суммы <tex>n</tex> гамильтоновых циклов. | + | Граф <tex>K_{2n+1}</tex> можно представить в виде суммы <tex>n</tex> [[Гамильтоновы графы|гамильтоновых циклов]]. |
|proof = | |proof = | ||
+ | [[Файл: Факторизация K7.png|thumb|360px|right|<tex>2</tex>-факторизация графа <tex>K_7</tex>]] | ||
Для того чтобы в графе <tex>K_{2n+1}</tex> построить <tex>n</tex> гамильтоновых циклов, непересекающихся по рёбрам, перенумеруем сначала его вершины <tex>v_1, v_2, \dots, v_{2n+1}</tex>. На множестве вершин <tex>v_1, v_2, \dots, v_{2n}</tex> зададим <tex>n</tex> непересекающихся простых цепей <tex>P_i=v_i v_{i-1} v_{i+1} v_{i-2} \dots v_{i+n-1}v_{i-n}</tex> следующим образом: <tex>j</tex>-ой вершине цепи <tex>P_i</tex> является вершина <tex>v_k</tex>, где <tex>k=i+(-1)^{j+1}[j/2]</tex>, все индексы приводятся к числам <tex>1, 2, \dots, 2n </tex> по модулю <tex>2n</tex>. Гамильтонов цикл <tex>Z_i</tex> можно получить, соединив вершину <tex>v_{2n+1}</tex> с концевыми вершинами цепи <tex>P_i</tex>. | Для того чтобы в графе <tex>K_{2n+1}</tex> построить <tex>n</tex> гамильтоновых циклов, непересекающихся по рёбрам, перенумеруем сначала его вершины <tex>v_1, v_2, \dots, v_{2n+1}</tex>. На множестве вершин <tex>v_1, v_2, \dots, v_{2n}</tex> зададим <tex>n</tex> непересекающихся простых цепей <tex>P_i=v_i v_{i-1} v_{i+1} v_{i-2} \dots v_{i+n-1}v_{i-n}</tex> следующим образом: <tex>j</tex>-ой вершине цепи <tex>P_i</tex> является вершина <tex>v_k</tex>, где <tex>k=i+(-1)^{j+1}[j/2]</tex>, все индексы приводятся к числам <tex>1, 2, \dots, 2n </tex> по модулю <tex>2n</tex>. Гамильтонов цикл <tex>Z_i</tex> можно получить, соединив вершину <tex>v_{2n+1}</tex> с концевыми вершинами цепи <tex>P_i</tex>. | ||
}} | }} |
Версия 19:48, 6 декабря 2015
Определение: |
Фактором (англ. factor) графа называется остовный подграф графа , не являющийся вполне несвязным. |
Определение: |
Граф | — сумма факторов , если графы не имеют попарно общих рёбер, а является их объединением. Такое разложение называется факторизацией (англ. factorization) графа .
Определение: |
-фактор — регулярный остовный подграф степени . Если граф представляет собой сумму -факторов, то их объединение называется -факторизацией, а сам граф назыается -факторизуемым. |
1-факторизация
Теорема: |
Полный граф -факторизуем. |
Доказательство: |
Нам нужно только указать разбиение множества рёбер графа на -фактора. Для этого обозначим вершины графа через и определим множества рёбер , , где каждый из индексов и является одним из чисел ; здесь сумма и разность берутся по модулю . Легко видеть, что набор даёт необходимое разбиение множества , а сумма подграфов , порождённых множествами , является -факторизацией графа . |
2-факторизация
Если граф
-факторизуем, то каждый его фактор должен быть объединением непересекающихся (по вершинам) циклов. Если -фактор связен, то он является гамильтоновым циклом. Поскольку в -факторизуемом графе все вершины должны иметь чётные степени, то полный граф не является -факторизуемым. Нечётные полные графы -факторизуемы.Теорема: |
Граф гамильтоновых циклов. можно представить в виде суммы |
Доказательство: |
Для того чтобы в графе построить гамильтоновых циклов, непересекающихся по рёбрам, перенумеруем сначала его вершины . На множестве вершин зададим непересекающихся простых цепей следующим образом: -ой вершине цепи является вершина , где , все индексы приводятся к числам по модулю . Гамильтонов цикл можно получить, соединив вершину с концевыми вершинами цепи . |
Источники информации
- Харари Фрэнк Теория графов Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6