Обсуждение участницы:Анна — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 14: Строка 14:
 
Два помеченных графа <tex>(G_{1}, f_{1})</tex> и <tex>(G_{2}, f_{2})</tex> '''изоморфны''', если существует изоморфизм между <tex>G_{1}</tex> и <tex>G_{2}</tex>, сохраняющий распределение меток.
 
Два помеченных графа <tex>(G_{1}, f_{1})</tex> и <tex>(G_{2}, f_{2})</tex> '''изоморфны''', если существует изоморфизм между <tex>G_{1}</tex> и <tex>G_{2}</tex>, сохраняющий распределение меток.
 
}}
 
}}
 +
 +
Все помеченные графы с тремя вершинами показаны на рисунке 1. <tex>4</tex> различных графа с <tex>3</tex> вершинами приводят к <tex>8</tex> различным помеченным графам.
 +
 +
{| cellpadding="2"
 +
| || [[Файл:Перечисл1.jpg|thumb|left|420px|Рис. 1. Помеченные графы с тремя вершинами.]]
 +
|}
 +
 +
Для нахождения числа помеченных графов с <tex>p</tex> вершинами нужно заметить, что каждое из <tex dpi = "165"> p\choose 2</tex> возможных ребер либо принадлежит графу, либо нет.
 +
 +
{{Теорема
 +
|about=1
 +
|statement=
 +
Число помеченных графов с <tex>p</tex> вершинами равно <tex dpi = "165"> 2^{p\choose 2}</tex>}}
 +
 +
Следовательно, число помеченных графов с <tex>q</tex> ребрами равно <tex dpi = "165"> {p\choose 2}\choose q</tex>

Версия 17:09, 27 декабря 2015

Перечисления графов

Помеченные графы

Определение:
Помеченный граф с [math]n[/math] вершинами — граф, у которого каждая вершина помечена целым числом от [math]1[/math] до [math]n[/math].


Более формально определить это понятие можно так: назовем распределением [math]f[/math] меток в графе [math]G[/math] с [math]n[/math] вершинами биекцию между множеством вершин графа и множеством [math]\{1 \cdots n\}[/math]. Тогда помеченным графом называется пара [math](G, f)[/math].


Определение:
Два помеченных графа [math](G_{1}, f_{1})[/math] и [math](G_{2}, f_{2})[/math] изоморфны, если существует изоморфизм между [math]G_{1}[/math] и [math]G_{2}[/math], сохраняющий распределение меток.


Все помеченные графы с тремя вершинами показаны на рисунке 1. [math]4[/math] различных графа с [math]3[/math] вершинами приводят к [math]8[/math] различным помеченным графам.

Рис. 1. Помеченные графы с тремя вершинами.

Для нахождения числа помеченных графов с [math]p[/math] вершинами нужно заметить, что каждое из [math] p\choose 2[/math] возможных ребер либо принадлежит графу, либо нет.

Теорема (1):
Число помеченных графов с [math]p[/math] вершинами равно [math] 2^{p\choose 2}[/math]

Следовательно, число помеченных графов с [math]q[/math] ребрами равно [math] {p\choose 2}\choose q[/math]