Обсуждение участницы:Анна — различия между версиями
Анна (обсуждение | вклад) |
Анна (обсуждение | вклад) |
||
Строка 43: | Строка 43: | ||
Пусть <tex>A</tex> {{---}} группа подстановок, действующая на множестве <tex>X</tex>. Для всякого элемента <tex>x \in X</tex> '''орбитой''' <tex>\Theta(x)</tex> элемента <tex>x</tex> называется подмножество множества <tex>X</tex>, состоящее из всех элементов <tex>y \in X</tex> таких, что <tex>\alpha \cdot x = y</tex> для некоторой подстановки <tex>\alpha</tex> из <tex>A</tex>. '''Стабилизатором''' <tex>A(x)</tex> элемента <tex>x</tex> называется подгруппа группы <tex>A</tex>, состоящая из всех подстановок из <tex>A</tex>, оставляющих элемент <tex>x</tex> неподвижным. Теорема является следствием соотношения <tex>|A| = |\Theta(x)|\cdot|A(x)|</tex> и его интерпретации в настоящем контексте.}} | Пусть <tex>A</tex> {{---}} группа подстановок, действующая на множестве <tex>X</tex>. Для всякого элемента <tex>x \in X</tex> '''орбитой''' <tex>\Theta(x)</tex> элемента <tex>x</tex> называется подмножество множества <tex>X</tex>, состоящее из всех элементов <tex>y \in X</tex> таких, что <tex>\alpha \cdot x = y</tex> для некоторой подстановки <tex>\alpha</tex> из <tex>A</tex>. '''Стабилизатором''' <tex>A(x)</tex> элемента <tex>x</tex> называется подгруппа группы <tex>A</tex>, состоящая из всех подстановок из <tex>A</tex>, оставляющих элемент <tex>x</tex> неподвижным. Теорема является следствием соотношения <tex>|A| = |\Theta(x)|\cdot|A(x)|</tex> и его интерпретации в настоящем контексте.}} | ||
+ | |||
+ | Иными словами, количество способов пометить вершины графа можно вычислить, зная количество и порядки групп помеченных графов, изоморфных друг другу (внутри одной группы). Например, для дерева-цепочки, состоящей из двух и более вершин, такая группа включает два элемента: тождественную перестановку и отражение относительно середины. Следовательно, ее порядок равен двум. | ||
+ | |||
+ | Рассмотрим пример. На рисунке 2 изображены все помеченные деревья с четырьмя вершинами. Всего их <tex>16</tex>. Среди них <tex>12</tex> изоморфны цепи <tex>P_{4}</tex> и <tex>4</tex> {{---}} графу <tex>K_{1, 3}</tex>. Порядок группы <tex>\Gamma(P_{4})</tex>, как было сказано выше, равен <tex>2</tex>. Порядок группы <tex>K_{1, 3} = 6</tex>. Так как <tex>p = 4</tex>, то имеем <tex dpi = "160">\frac{4!}{|\Gamma(P_{4})|} = 12</tex> и <tex dpi = "160">\frac{4!}{|\Gamma(K_{1, 3})|} = 4</tex>. | ||
+ | |||
+ | {| cellpadding="2" | ||
+ | | || [[Файл:Перечисл2.jpg|thumb|left|720px|Рис. 2. Помеченные деревья с четырьмя вершинами.]] | ||
+ | |} | ||
+ | |||
+ | == Теорема перечисления Пойа == |
Версия 22:30, 27 декабря 2015
Перечисления графов
Помеченные графы
Определение: |
Помеченный граф с | вершинами — граф, у которого каждая вершина помечена целым числом от до .
Более формально определить это понятие можно так: назовем распределением меток в графе с вершинами биекцию между множеством вершин графа и множеством . Тогда помеченным графом называется пара .
Определение: |
Два помеченных графа | и изоморфны, если существует изоморфизм между и , сохраняющий распределение меток.
Все помеченные графы с тремя вершинами показаны на рисунке 1. различных графа с вершинами приводят к различным помеченным графам.
Для нахождения числа помеченных графов с
вершинами нужно заметить, что каждое из возможных ребер либо принадлежит графу, либо нет.Теорема (1): |
Число помеченных графов с вершинами равно . |
Следовательно, число помеченных графов с
ребрами равно .Теорема (Кэли): |
Число помеченных деревьев с вершинами равно . |
Теорема (2): |
Данный граф можно пометить способами. |
Доказательство: |
Приведем набросок доказательства. Пусть — группа подстановок, действующая на множестве . Для всякого элемента орбитой элемента называется подмножество множества , состоящее из всех элементов таких, что для некоторой подстановки из . Стабилизатором элемента называется подгруппа группы , состоящая из всех подстановок из , оставляющих элемент неподвижным. Теорема является следствием соотношения и его интерпретации в настоящем контексте. |
Иными словами, количество способов пометить вершины графа можно вычислить, зная количество и порядки групп помеченных графов, изоморфных друг другу (внутри одной группы). Например, для дерева-цепочки, состоящей из двух и более вершин, такая группа включает два элемента: тождественную перестановку и отражение относительно середины. Следовательно, ее порядок равен двум.
Рассмотрим пример. На рисунке 2 изображены все помеченные деревья с четырьмя вершинами. Всего их
. Среди них изоморфны цепи и — графу . Порядок группы , как было сказано выше, равен . Порядок группы . Так как , то имеем и .