Busy beaver — различия между версиями
AReunov (обсуждение | вклад) |
AReunov (обсуждение | вклад) |
||
Строка 6: | Строка 6: | ||
<b><tex>BB(n)</tex></b> {{---}} функция от натурального аргумента <tex>n</tex>, равная максимальному числу шагов, которое может совершить программа длиной <tex>n</tex> символов и затем остановиться. | <b><tex>BB(n)</tex></b> {{---}} функция от натурального аргумента <tex>n</tex>, равная максимальному числу шагов, которое может совершить программа длиной <tex>n</tex> символов и затем остановиться. | ||
}} | }} | ||
+ | ---- | ||
+ | {{Утверждение | ||
+ | |statement= | ||
+ | Функция <tex>BB(n)</tex> не убывает. | ||
+ | |proof= | ||
+ | В данной задаче существует функция <tex>\Sigma(n)</tex>, которая в зависимости от числа состояний <tex>n</tex> возвращает максимальное число единиц, которое может быть записано на ленту машиной-чемпионом. Именно машина-чемпион является усердным бобром. Из смысла задачи следует, что функция <tex>\Sigma(n)</tex> не убывает. <br>Теперь покажем, что <tex>\forall n \ BB(n) > \Sigma(n).</tex> Для того, чтобы поместить одну единицу на ленту, требуется совершить хотя бы 1 шаг. Из этого следует, что <tex>BB(n)</tex> растет быстрее, чем <tex>\Sigma(n)</tex>. Сделовательно, <tex>BB(n)</tex> монотонно возрастает. | ||
+ | }} | ||
+ | ---- | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
<tex>BB(n)</tex> растет быстрее любой всюду определенной неубывающей [[Вычислимые функции|вычислимой функции]] <tex>f(n) : N \rightarrow N </tex>, то есть для всех <tex>n</tex> кроме конечного числа выполнено <tex>BB(n) > f(n).</tex> | <tex>BB(n)</tex> растет быстрее любой всюду определенной неубывающей [[Вычислимые функции|вычислимой функции]] <tex>f(n) : N \rightarrow N </tex>, то есть для всех <tex>n</tex> кроме конечного числа выполнено <tex>BB(n) > f(n).</tex> | ||
|proof= | |proof= | ||
− | + | Докажем, что для любой вычислимой функции <tex>f(n)</tex> функция <tex>BB(n)</tex> будет превышать ее значение (за исключением конечного множества значений числа <tex>n</tex>). <br> | |
− | |||
− | |||
− | |||
− | |||
Пусть <tex>f(n)</tex> представлена своим кодом. Для каждого <tex>n</tex> определим программы вида: | Пусть <tex>f(n)</tex> представлена своим кодом. Для каждого <tex>n</tex> определим программы вида: | ||
<tex>p_n()</tex>: | <tex>p_n()</tex>: | ||
Строка 26: | Строка 30: | ||
Длина <tex>p_n</tex> будет равна <tex> \lg n + const </tex>, где <tex>const</tex> {{---}} длина кода без десятичной записи <tex>n</tex>. Пусть <tex>n_0</tex> {{---}} решение уравнения <tex>\lg n + const = n</tex>. Тогда для всех натуральных <tex> n > \left \lceil n_0 \right \rceil </tex> будет выполнено неравенство: <tex> n > len(p_n) \Rightarrow BB(n) \geqslant BB(len(p_n)) > m = f(n) </tex>. Данный переход корректен, так как мы доказали, что <tex>BB(n)</tex> {{---}} монотонно возрастающая функция. Так как <tex>n_0</tex> конечно, то мы всегда можем найти такие значения <tex>n</tex>, при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано. | Длина <tex>p_n</tex> будет равна <tex> \lg n + const </tex>, где <tex>const</tex> {{---}} длина кода без десятичной записи <tex>n</tex>. Пусть <tex>n_0</tex> {{---}} решение уравнения <tex>\lg n + const = n</tex>. Тогда для всех натуральных <tex> n > \left \lceil n_0 \right \rceil </tex> будет выполнено неравенство: <tex> n > len(p_n) \Rightarrow BB(n) \geqslant BB(len(p_n)) > m = f(n) </tex>. Данный переход корректен, так как мы доказали, что <tex>BB(n)</tex> {{---}} монотонно возрастающая функция. Так как <tex>n_0</tex> конечно, то мы всегда можем найти такие значения <tex>n</tex>, при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано. | ||
}} | }} | ||
− | + | ---- | |
'''Вывод:''' доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что <tex>BB(n)</tex> невычислима. | '''Вывод:''' доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что <tex>BB(n)</tex> невычислима. | ||
Версия 23:35, 14 января 2016
Поиск усердных бобров (англ. busy beaver) — известная задача в теории вычислимости. Под усердным бобром в теории вычислимости понимают машину Тьюринга с заданным числом состояний конечного автомата, которая будучи запущенной на пустой ленте, записывает на нее максимальное количество ненулевых символов и останавливается.
В данном конспекте будет рассмотрена функция, которая используется в этой задаче для подсчета числа шагов для завершения программы при определенном числе состояний.
Определение: |
— функция от натурального аргумента , равная максимальному числу шагов, которое может совершить программа длиной символов и затем остановиться. |
Утверждение: |
Функция не убывает. |
В данной задаче существует функция Теперь покажем, что Для того, чтобы поместить одну единицу на ленту, требуется совершить хотя бы 1 шаг. Из этого следует, что растет быстрее, чем . Сделовательно, монотонно возрастает. | , которая в зависимости от числа состояний возвращает максимальное число единиц, которое может быть записано на ленту машиной-чемпионом. Именно машина-чемпион является усердным бобром. Из смысла задачи следует, что функция не убывает.
Утверждение: |
вычислимой функции , то есть для всех кроме конечного числа выполнено растет быстрее любой всюду определенной неубывающей |
Докажем, что для любой вычислимой функции
:
k = десятичная запись числа n
m = f(k)
for i = 1 to m + 1
шаг программы
Каждая такая программа делает как минимум Длина шагов. будет равна , где — длина кода без десятичной записи . Пусть — решение уравнения . Тогда для всех натуральных будет выполнено неравенство: . Данный переход корректен, так как мы доказали, что — монотонно возрастающая функция. Так как конечно, то мы всегда можем найти такие значения , при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано. |
Вывод: доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что
невычислима.См. также
Источники информации
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)
- Английская Википедия — Busy beaver
- Федотов П.В., Царев Ф.Н., Шалыто А.А. — Задача поиска усердных бобров и ее решения