Обсуждение участницы:Анна — различия между версиями
Анна (обсуждение | вклад) (→Доказательство корректности) |
Анна (обсуждение | вклад) (→Доказательство корректности) |
||
Строка 42: | Строка 42: | ||
В противном случае найдем такую работу <tex>i_t</tex> с наименьшим <tex>t</tex>, что никакая работа <tex>i_v</tex>, где <tex>v > t</tex>, не превосходит <tex>i_t</tex>, причем <tex>i_t < l</tex>. По определению это значит, что после того, как работа <tex>i_t</tex> будет добавлена в <tex>S</tex>, ни одна работа <tex>i \leq i_t</tex> не будет удалена из этого множества. Так как <tex>i_t < l</tex>, то по определению <tex>l</tex> все работы, которые на момент добавления <tex>i_t</tex> находятся в <tex>S</tex>, так же должны принадлежать <tex>S^*</tex>. Покажем, что это приведет нас к противоречию.<br> | В противном случае найдем такую работу <tex>i_t</tex> с наименьшим <tex>t</tex>, что никакая работа <tex>i_v</tex>, где <tex>v > t</tex>, не превосходит <tex>i_t</tex>, причем <tex>i_t < l</tex>. По определению это значит, что после того, как работа <tex>i_t</tex> будет добавлена в <tex>S</tex>, ни одна работа <tex>i \leq i_t</tex> не будет удалена из этого множества. Так как <tex>i_t < l</tex>, то по определению <tex>l</tex> все работы, которые на момент добавления <tex>i_t</tex> находятся в <tex>S</tex>, так же должны принадлежать <tex>S^*</tex>. Покажем, что это приведет нас к противоречию.<br> | ||
Пусть <tex>S_t</tex> {{---}} множество <tex>S</tex> после удаления <tex>k_{i_t}</tex> и добавления <tex>i_t</tex>. Рассмотрим два случая:<br> | Пусть <tex>S_t</tex> {{---}} множество <tex>S</tex> после удаления <tex>k_{i_t}</tex> и добавления <tex>i_t</tex>. Рассмотрим два случая:<br> | ||
− | а). Если <tex>k^* = k_{i_t} > k</tex>, то есть <tex>d_{k^*} \geq d_k</tex>, то мы можем заменить <tex>k</tex> на <tex>k^*</tex> в <tex>S^*</tex>, сохранив условие, что <tex>S^*</tex> не содержит опаздывающих работ. | + | а). Если <tex>k^* = k_{i_t} > k</tex>, то есть <tex>d_{k^*} \geq d_k</tex>, то мы можем заменить <tex>k</tex> на <tex>k^*</tex> в <tex>S^*</tex>, сохранив условие, что <tex>S^*</tex> не содержит опаздывающих работ. Следовательно, множество <tex>S_t \cup \{k^*\}</tex> не содержит работ со штрафами, что противоречит построению <tex>S</tex>. |
+ | б). Пусть <tex>k^* < k</tex>. Тогда все работы из <tex>S_t \cup \{k\}</tex> могут быть выполнены в срок, так как <tex>S_t</tex> и <tex>k</tex> принадлежат <tex>S^*</tex>. Более того, все работы из множества <tex>\{j \in S_t | j < k\}</tex> могут быть выполнены без опозданий. Таким образом, мы снова приходим к тому, что множество <tex>S_t \cup \{k^*\}</tex> не содержит работ со штрафами, что является противоречием. | ||
}} | }} |
Версия 12:47, 6 мая 2016
Задача: |
Дано | одинаковых станков, на которых нужно выполнить работ. Любая работа на любом станке выполняется единицу времени. Для каждой работы есть время окончания — ожидается, что до этого времени она будет закончена, и штраф , который нужно будет выплатить в случае, если работа была закончена после . Необходимо минимизировать суммарный штраф, который придется выплатить.
Описание алгоритма
Оптимальное расписание для этой задачи будем задавать множеством работ
Чтобы построить множество , будем добавлять работы в порядке неуменьшения их времен окончания, и как только некоторая работа опаздывает, удалим из работу с минимальным значением и поставим на ее место.
Пусть есть работы с временами окончания . Будем называть простоем временной интервал, в который на машине ничего не обрабатывается. Тогда следующий алгоритм вычислит оптимальное множество .
for to : if опаздывает, и все более ранние простои заполнены: найти if : заменить на в else: добавить в и поставить на место самого раннего простоя
Таким образом, работы, не попавшие в
, будут иметь минимальное значение .Доказательство корректности
Теорема: |
Вышеописанный алгоритм корректен и строит оптимальное множество работ . |
Доказательство: |
Пусть
Покажем, что в Будем говорить
то |