Pintreepi1Lmax — различия между версиями
Zernov (обсуждение | вклад) |
Zernov (обсуждение | вклад) (→Второй шаг) |
||
| Строка 40: | Строка 40: | ||
=== Второй шаг === | === Второй шаг === | ||
На втором этапе алгоритма работы сортируются в неубывающем порядке их дедлайнов. Предполагается, что работы занумерованы в соответствии с предыдущим пунктом, т.е. <tex>d_{i} \leqslant d_{j}</tex>, если <tex>i \leqslant j</tex>. | На втором этапе алгоритма работы сортируются в неубывающем порядке их дедлайнов. Предполагается, что работы занумерованы в соответствии с предыдущим пунктом, т.е. <tex>d_{i} \leqslant d_{j}</tex>, если <tex>i \leqslant j</tex>. | ||
| − | + | * В переменной <tex>\mathtt F</tex> хранится время, когда станок освободится. | |
| − | В переменной <tex>F</tex> хранится время, когда станок освободится. | + | * В массиве <tex>\mathtt r</tex> хранится информация о максимальном времени завершении обработки родителя. |
| − | + | * Массив <tex>\mathtt q</tex> хранит информацию о количестве работ, готовых к исполнению (находящихся в очереди) в момент времени <tex>t</tex>. | |
| − | В массиве <tex>r</tex> хранится информация о максимальном времени завершении обработки родителя. | + | * Массив <tex>\mathtt x</tex> хранит информацию о начале выполнения работы <tex>i</tex>. |
| − | |||
| − | Массив <tex>q</tex> хранит информацию о количестве работ, готовых к исполнению (находящихся в очереди) в момент времени <tex>t</tex>. | ||
| − | |||
| − | Массив <tex>x</tex> хранит информацию о начале выполнения работы <tex>i</tex>. | ||
F = 0 | F = 0 | ||
Версия 16:36, 22 мая 2016
| Задача: |
Рассмотрим задачу на нахождение расписания:
|
Описание алгоритма
Идея
Все работы хранятся в качестве вершин intree-дерева, состоящем из вершин, нескольких корней и одного листа. В intree-дереве у одной вершины может быть два и более родителей. Решение задачи состоит из двух шагов: на первом шаге мы меняем сроки выполнения работ в соответствии с их очередностью.
- Для всех таких, что существует ребро из в будем менять на .
- Работы расставляются в неубывающем порядке сроков.
Первый шаг
Алгоритм изменения сроков:
deque = i i является листом while deque not empty i = stack.remove_first() for j j является предком i stack.add_last(j)
| Лемма: |
Работа с новым сроком в расписании не имеет опозданий тогда и только тогда, когда она не имела опозданий с оригинальным сроком . |
| Доказательство: |
|
: Т.к. , значит, если опозданий не было со значениями , их не будет и со значениями . : Пусть у нас были сроки и мы их заменили на в соответствии с приведенным алгоритмом.
|
Второй шаг
На втором этапе алгоритма работы сортируются в неубывающем порядке их дедлайнов. Предполагается, что работы занумерованы в соответствии с предыдущим пунктом, т.е. , если .
- В переменной хранится время, когда станок освободится.
- В массиве хранится информация о максимальном времени завершении обработки родителя.
- Массив хранит информацию о количестве работ, готовых к исполнению (находящихся в очереди) в момент времени .
- Массив хранит информацию о начале выполнения работы .
F = 0
for i = 1 .. n
r[i] = 0
for t = 0 .. n
q[t] = 0
for i = 1 .. n
t = max(r[i], F)
x[i] = t
q[t] = q[t] + 1
if q[t] == m
F = t + 1
j = i.child()
r[j] = max (r[j], t + 1)
Расписание, сгенерированное этим алгоритмом имеет важное свойство: число заданий в очереди в любой момент времени меньше, чем в момент . Действительно, пусть во время мы выполняем работ, и хотя бы работ готовы к выполению в момент времени . Но т.к. , значит каждой из работ предшествовала как минимум одна, поскольку у всех вершин, кроме корней, есть как минимум один предок. Значит, в момент времени исполнялось не менее работ, противоречие.
| Лемма: |
Если существует такое расписание, в котором ни одна из работ не будет выполнена с опозданием, то тогда это свойство сохранится в построенном данным алгоритмом расписании |
| Доказательство: |
|
Предположим, что существует работа из расписания, построенного алгоритмом. В таком случае существует работа, которая опоздала по отношению к измененным срокам. Возьмем наименьшее такое, что . Пусть — наибольшее из удовлетворяющих условию Такое существует, потому что иначе работ с находятся в очереди до . Работа к ним не принадлежит, поскольку , а значит, что должны быть в очереди в момент времени и ни одна работа не должна опаздывать. Противоречие. Любая работа с и должна иметь предка, начавшего работать в момент времени . Теперь рассмотрим два случая: Первый случай: .
Второй случай: .
|
| Теорема: |
Данный алгоритм корректно решает задачу |
| Доказательство: |
| Пусть — оптимальное значение. В таком случае, существует расписание, удовлетворяющее , что эквивалетно выражению для . По первой лемме расписание , построенное для сдвинутых дат удовлетворяет данным выражениям. Таким образом, оно оптимально. Нетрудно заметить, что идентично расписанию, построенному алгоритмом, т.к. для |
Источники информации
- Peter Brucker «Scheduling Algorithms», fifth edition, Springer — с. 151-156 ISBN 978-3-540-69515-8
