Объединение матроидов, проверка множества на независимость — различия между версиями
Alice (обсуждение | вклад) |
Alice (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Пусть <tex>M_1 = \langle X, \mathcal{I}_1 \rangle </tex> и <tex> M_2 = \langle X, \mathcal{I}_2 \rangle </tex> {{---}} два матроида на множестве элементов <tex>X</tex> с наборами независимых множеств <tex>\mathcal{I}_1</tex> и <tex>\mathcal{I}_2</tex>. Положим <tex> \mathcal{I} = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2 \mathcal {g} </tex>. Множество <tex>\mathcal{I}</tex> удовлетворяет [[Объединение матроидов, доказательство того, что объединение является матроидом|аксиомам независимости]], следовательно, <tex>\langle X, \mathcal{I} \rangle </tex> {{---}} матроид, для которого <tex>\mathcal{I}</tex> служит набором независимых множеств. Этот матроид называется '''объединением матроидов''' (англ. ''matroid union'') <tex>M_1</tex> и <tex>M_2</tex>, и обозначается <tex> M_1 \cup M_2 </tex> | + | Пусть <tex>M_1 = \langle X, \mathcal{I}_1 \rangle </tex> и <tex> M_2 = \langle X, \mathcal{I}_2 \rangle </tex> {{---}} два матроида на множестве элементов <tex>X</tex> с наборами независимых множеств <tex>\mathcal{I}_1</tex> и <tex>\mathcal{I}_2</tex>. Положим <tex> \mathcal{I} = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2 \mathcal {g} </tex>. Множество <tex>\mathcal{I}</tex> удовлетворяет [[Объединение матроидов, доказательство того, что объединение является матроидом|аксиомам независимости]], следовательно, <tex>\langle X, \mathcal{I} \rangle </tex> {{---}} матроид, для которого <tex>\mathcal{I}</tex> служит набором независимых множеств. Этот матроид называется '''объединением матроидов''' (англ. ''matroid union'') <tex>M_1</tex> и <tex>M_2</tex>, и обозначается <tex>M = M_1 \cup M_2 </tex> |
}} | }} | ||
Обычно термин "объединение" применяется, когда носители <tex>X</tex> в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого <tex>M_1</tex> и <tex>M_2</tex> не перестанут быть матроидами. Если в <tex>M_1</tex> и <tex>M_2</tex> носители непересекающиеся, тогда это будет являться [[Прямая сумма матроидов|прямой суммой матроидов]]. | Обычно термин "объединение" применяется, когда носители <tex>X</tex> в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого <tex>M_1</tex> и <tex>M_2</tex> не перестанут быть матроидами. Если в <tex>M_1</tex> и <tex>M_2</tex> носители непересекающиеся, тогда это будет являться [[Прямая сумма матроидов|прямой суммой матроидов]]. | ||
Строка 10: | Строка 10: | ||
− | + | ==Проверка множества на независимость== | |
− | + | Зададим функцию <tex>P_1</tex> : <tex> X \times Y \rightarrow X</tex> : <tex>P_1((x, y)) = x</tex>, а для множества <tex>B \in X \times Y</tex> выполняется <tex>P_1(B) = \{A \subset X \mid \forall x \in A </tex> <tex> \exists b \in B : P_1(b) = x\}</tex>. | |
− | <tex> | + | Преобразуем каждый элемент множества <tex>X</tex> в матроиде <tex>M_1</tex> в <tex>(x, 1)</tex>, а каждый элемент множества <tex>X</tex> в матроиде <tex>M_2</tex> в <tex>(x, 2)</tex>. Мы получили два матроида <tex>M'_1 = \langle (X \times \{1\}), \mathcal{I}_1 \rangle </tex> и <tex> M'_2 = \langle (X \times \{2\}), \mathcal{I}_2 \rangle </tex>. Наша функция <tex>P_1</tex> будет являться естественным отображением <tex>(x, i) \rightarrow x</tex>, где <tex>i \in \{1, 2\}</tex>. |
− | + | Затем определим два матроида, которые нам далее понадобятся: | |
− | Теперь перейдём к задаче. У нас есть множество и нужно проверить его независимость в объединении матроидов. | + | # <tex>M_{\oplus} = M'_1 \oplus M'_2 = \langle (X \times \{1\}) \cup (X \times \{2\}),</tex> <tex> \mathcal{I}_{\oplus} = \{A \mid A = A_1 \cup A_2, A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2\} \rangle</tex> {{---}} прямая сумма двух матроидов (носители матроидов <tex>M'_1</tex> и <tex>M'_2</tex> при пересечении будут давать пустое множество). |
− | Множество <tex>U</tex> | + | # <tex>M_{P_1} = \langle (X \times \{1\}) \cup (X \times \{2\}),</tex> <tex> \mathcal{I}_{P_1} = \{A \mid |P_1(A)| = |A|\} \rangle</tex> {{---}} <tex>\mathcal{I}_{P_1}</tex> в данном случае будет содержать такие независимые множества, что мощность любого множества <tex>A</tex> из <tex>\mathcal{I}_{P_1}</tex> будет равна мощности множества, получаемого функцией <tex>P_1</tex> над <tex>A</tex>, то есть <tex>A</tex> не будет содержать одновременно <tex>(x, 1)</tex> и <tex>(x, 2)</tex>. |
− | + | ||
− | + | ||
+ | Теперь перейдём к нашей задаче. У нас есть некоторое множество в <tex>X</tex>, и нужно проверить его независимость в объединении матроидов (то есть, лежит ли оно в <tex>\mathcal{I}</tex>). | ||
+ | |||
+ | Множество <tex>U</tex> является независимым, если <tex>r(U) = |U|</tex>. | ||
+ | Можно заметить, что в матроиде <tex>M</tex> выполняется <tex>r(U) = \max\limits_{A \mid A \in \mathcal{I}_{\oplus}, A \in \mathcal{I}_{P_1}, P_1(A) \subset U} |A|</tex>. | ||
+ | Таким образом, мы свели задачу о проверке множества на независимость в объединении к нахождению мощности максимального независимого множества в пересечении матроидов <tex>M_{\oplus}</tex> и <tex>M_{P_1}</tex>. С помощью [[Алгоритм построения базы в пересечении матроидов|алгоритма построения базы в пересечении матроидов]] мы будем искать размер максимального подсета множества <tex>U' \mid P_1(U') = U</tex> в пересечении набора независимых множеств матроидов. | ||
== См. также== | == См. также== | ||
Строка 29: | Строка 34: | ||
* Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. {{---}} Лекции по теории графов | * Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. {{---}} Лекции по теории графов | ||
* Chandra Chekuri {{---}} [https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture19.pdf '''Combinatorial Optimization'''] | * Chandra Chekuri {{---}} [https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture19.pdf '''Combinatorial Optimization'''] | ||
+ | * Michel X. Goemans {{---}} [http://math.mit.edu/~goemans/18438F09/lec13.pdf '''Advanced Combinatorial Optimization'''] | ||
* https://en.wikipedia.org/wiki/Matroid | * https://en.wikipedia.org/wiki/Matroid | ||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Матроиды]] | [[Категория:Матроиды]] |
Версия 16:57, 28 мая 2016
Определение: |
Пусть аксиомам независимости, следовательно, — матроид, для которого служит набором независимых множеств. Этот матроид называется объединением матроидов (англ. matroid union) и , и обозначается | и — два матроида на множестве элементов с наборами независимых множеств и . Положим . Множество удовлетворяет
Обычно термин "объединение" применяется, когда носители прямой суммой матроидов.
в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого и не перестанут быть матроидами. Если в и носители непересекающиеся, тогда это будет являться- Операция объединения матроидов ассоциативна, следовательно, можно говорить об объединении нескольких матроидов.
- В отличие от пересечения матроидов, объединение двух конечных (англ. finite matroid) матроидов всегда является матроидом, однако объединение двух бесконечных матроидов (англ. infinite matroid) не обязательно будет им.
- Объединение применяется к независимым множествам, а не к матроидам в целом, то есть это операция на другом уровне, по сравнению с пересечение матроидов.
Проверка множества на независимость
Зададим функцию
: : , а для множества выполняется .Преобразуем каждый элемент множества
в матроиде в , а каждый элемент множества в матроиде в . Мы получили два матроида и . Наша функция будет являться естественным отображением , где .Затем определим два матроида, которые нам далее понадобятся:
- — прямая сумма двух матроидов (носители матроидов и при пересечении будут давать пустое множество).
- — в данном случае будет содержать такие независимые множества, что мощность любого множества из будет равна мощности множества, получаемого функцией над , то есть не будет содержать одновременно и .
Теперь перейдём к нашей задаче. У нас есть некоторое множество в , и нужно проверить его независимость в объединении матроидов (то есть, лежит ли оно в ).
Множество алгоритма построения базы в пересечении матроидов мы будем искать размер максимального подсета множества в пересечении набора независимых множеств матроидов.
является независимым, если . Можно заметить, что в матроиде выполняется . Таким образом, мы свели задачу о проверке множества на независимость в объединении к нахождению мощности максимального независимого множества в пересечении матроидов и . С помощьюСм. также
Литература
- Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. — Лекции по теории графов
- Chandra Chekuri — Combinatorial Optimization
- Michel X. Goemans — Advanced Combinatorial Optimization
- https://en.wikipedia.org/wiki/Matroid