NP-полнота задачи о раскраске графа — различия между версиями
Alant (обсуждение | вклад) |
Alant (обсуждение | вклад) |
||
Строка 20: | Строка 20: | ||
* <math> \forall i \in \{1 .. n\} </math> соединим каждую вершину из <math> \{v_i, \tilde{v_i}\} </math> со всеми <math> c_j </math>, кроме <math> c_0 </math> и <math> c_i </math>. Этим мы обеспечили выполнение первого условия из приведенных выше, так как теперь ровно одна вершина из <math> \{v_i, \tilde{v_i}\} </math> окрашена в цвет <math> c_0 </math>, а другая - в цвет <math> c_i </math> <br/> | * <math> \forall i \in \{1 .. n\} </math> соединим каждую вершину из <math> \{v_i, \tilde{v_i}\} </math> со всеми <math> c_j </math>, кроме <math> c_0 </math> и <math> c_i </math>. Этим мы обеспечили выполнение первого условия из приведенных выше, так как теперь ровно одна вершина из <math> \{v_i, \tilde{v_i}\} </math> окрашена в цвет <math> c_0 </math>, а другая - в цвет <math> c_i </math> <br/> | ||
Осталось сделать так, чтобы возможность сделать истинной каждую скобку соответствовала необходимости покрасить хотя бы одну из вершин, соответствующих переменным в ней, в цвет <math> c_0 </math>. | Осталось сделать так, чтобы возможность сделать истинной каждую скобку соответствовала необходимости покрасить хотя бы одну из вершин, соответствующих переменным в ней, в цвет <math> c_0 </math>. | ||
− | * | + | * Для этого для каждой скобки вида <math> ([\lnot]x_i \lor [\lnot] x_j \lor [\lnot] x_k)_l </math> добавим вершину <math> d_l </math>, соединив ее с соответствующими <math> v_i (\tilde{v_i}), v_j(\tilde{v_j}), v_k(\tilde{v_k}) </math>, а также со всеми <math> c_i </math>, кроме <math> c_i, c_j, c_k </math>. |
Версия 00:37, 10 марта 2010
Содержание
Формулировка задачи
Даны граф
и число . Нужно проверить, правда ли, что можно раскрасить вершины графа в цветов так, чтобы любые две вершины, соединённые ребром, имели разные цвета.Утверждение
Сформулированная выше задача NP-полна.
Доказательство
Доказательство принадлежности задачи классу NP
Сертификатом для решения данной задачи будет последовательность
, где , а обозначает цвет i-ой вершины. Проверку корректности такого сертификата легко осуществить за полиномиальное время, например, перебором всех пар вершин и проверкой того, что в случае, когда они соединены ребром, они имеют разные цвета, лежащие на отрезке .Доказательство принадлежности задачи классу NPH
Сведем задачу 3CNFSAT к данной.
Пусть дана , где , и - переменные или их отрицания (возможно, с повторениями). Сами переменные будем обозначать .
Заметим следующие тривиальные факты, которые будут использованы при построении графа:
- Ровно одно выражение из истинно;
Построим множества V и E будущего графа следущим образом:
- ;
- ;
Будем интерпретировать
как цвет, причем - цвет, обозначающий истину.- добавим в V вершины , отвечающие и соответственно, и соединим каждую такую пару ребром;
-
Осталось сделать так, чтобы возможность сделать истинной каждую скобку соответствовала необходимости покрасить хотя бы одну из вершин, соответствующих переменным в ней, в цвет
.- Для этого для каждой скобки вида добавим вершину , соединив ее с соответствующими , а также со всеми , кроме .