Слово Фибоначчи — различия между версиями
AMaltsev (обсуждение | вклад) |
AMaltsev (обсуждение | вклад) м |
||
Строка 122: | Строка 122: | ||
== Источники == | == Источники == | ||
− | * Билл Смит «Методы и алгоритмы вычислений на строках» | + | * Билл Смит «Методы и алгоритмы вычислений на строках» {{---}} издательство «Вильямс» {{---}} 2006 {{---}} стр. 100-107 |
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Основные определения. Простые комбинаторные свойства слов]] | [[Категория:Основные определения. Простые комбинаторные свойства слов]] |
Версия 23:58, 8 июня 2016
Определение: |
Строками Фибоначчи (англ. Fibostring) называются строки над алфавитом | , полученные последовательным применением морфизма :
Содержание
Примеры
Первые несколько строк Фибоначчи:
Рекуррентное соотношение для строк Фибоначчи
Лемма (1): |
Строки Фибоначчи удовлетворяют рекуррентному соотношению . |
Доказательство: |
Докажем методом математической индукции. База: При .Переход: Пусть и . . Так как отображение — линейно (т.е. ), то можно продолжить равенство: . |
Также можно заметить, что длины строк Фибоначчи совпадают с числами Фибоначчи.
Обобщенная строка Фибоначчи
Начнем обобщение идеи строк Фибоначчи следующим образом. Вместо отдельных символов
и будем оперировать двумя произвольными строками :Таким образом "старый" морфизм будет частным случаем "нового" морфизма при
и .По аналогии можно вычислить
, и, наконец, определить -ую обобщенную строку Фибоначчи как:Определение: |
Обобщенная строка Фибоначчи (англ. generalized Fibostring) имеет вид | .
Первые несколько обобщенных строк имеют вид:
А также в общем случае:
Определение: |
Определим бесконечную обобщенную строку Фибоначчи | (англ. generalized infinite Fibostring) как строку, содержащую все строки в качестве префиксов.
Лемма (2): |
Доказательство: |
. |
Например:
.Это равенство работает также для
.Утверждение (1): |
В не может содержаться подстроки или . |
Утверждение (2): |
Для любого . |
Докажем это утверждение методом математической индукции. База. Переход. Но то, что было доказано ранее в ходе индукции. |
Лемма (3): |
Для любого целого выполняется равенство . |
Доказательство: |
. |
Лемма (4): |
Для любого целого бордеры для . строка имеет |
Обратный морфизм
Определение: |
Обратный морфизм
| определяется как отображение:
Обратный морфизм позволяет из строки
получить строку .Связь с задачей о построении исключений
Утверждение (3): |
Для любого целого содержит куб некоторой подстроки. |
Строка | содержит подстроку и является префиксом для .
Теорема (1): |
Никакая строка не содержит подстроки кратности . |
Утверждение (4): |
Бесконечная строка Фибоначчи задачи построения -исключения является решением |
Это следует из утверждения и теоремы выше. |
См. также
Источники
- Билл Смит «Методы и алгоритмы вычислений на строках» — издательство «Вильямс» — 2006 — стр. 100-107