Иммунные и простые множества — различия между версиями
Строка 64: | Строка 64: | ||
* Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7 | * Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7 | ||
* Роджерс Х. Теория рекурсивных функций и эффективная вычислимость. — М.:Мир, 1972. С. 141-143. | * Роджерс Х. Теория рекурсивных функций и эффективная вычислимость. — М.:Мир, 1972. С. 141-143. | ||
+ | [[Категория: Теория формальных языков]] | ||
+ | [[Категория: Теория вычислимости]] |
Версия 22:16, 17 октября 2016
Определение: |
Множество натуральных чисел | называется иммунным (англ. immune set), если оно бесконечно и не содержит бесконечных перечислимых подмножеств.
Определение: |
Множество натуральных чисел | называется простым (англ. simple set), если — перечислимое, бесконечное и дополнение — иммунное.
Теорема: | ||||||||||||||||||
Существует простое множество. | ||||||||||||||||||
Доказательство: | ||||||||||||||||||
Рассмотрим все программы. Для некоторого перечислимого языка какая-то из них является его перечислителем. Рассмотрим программу :главной нумерации программу на шагов напечатать первый , который вывела эта программа, такой что: for for запустить -ую в
Докажем несколько лемм, из которых будет очевидна правильность утверждения теоремы.
Вернемся к доказательству теоремы. Получаем: — иммунно. — простое. | ||||||||||||||||||
Литература
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7
- Роджерс Х. Теория рекурсивных функций и эффективная вычислимость. — М.:Мир, 1972. С. 141-143.