Перечислимые языки — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 24: Строка 24:
 
<tex> \Longrightarrow </tex>:
 
<tex> \Longrightarrow </tex>:
  
Пусть <tex>L</tex> {{---}} перечислимый язык. Тогда для него существует программа <tex>g</tex>, которая по номеру <tex>i</tex> выводит слово из <tex>L</tex>. Значит, для  всех <tex>x</tex> из <tex>L</tex> путем перебора значений функции <tex>g</tex> мы можем найти такое <tex>i</tex>, что <tex> g(i) = x</tex>. Следовательно, существует программа <tex>p</tex>, такая, что <tex>\forall x: x \in L \Leftrightarrow p(x)=1</tex>. Тогда <tex>L</tex> является полуразрешимым языком.
+
: Пусть <tex>L</tex> {{---}} перечислимый язык. Тогда для него существует программа <tex>g</tex>, которая по номеру <tex>i</tex> выводит слово из <tex>L</tex>. Значит, для  всех <tex>x</tex> из <tex>L</tex> путем перебора значений функции <tex>g</tex> мы можем найти такое <tex>i</tex>, что <tex> g(i) = x</tex>. Следовательно, существует программа <tex>p</tex>, такая, что <tex>\forall x: x \in L \Leftrightarrow p(x)=1</tex>. Тогда <tex>L</tex> является полуразрешимым языком.
 
  <tex>{\bf p}</tex>(x):
 
  <tex>{\bf p}</tex>(x):
 
   '''for''' <tex> i = 1 ~ .. ~ \infty</tex>
 
   '''for''' <tex> i = 1 ~ .. ~ \infty</tex>
Строка 32: Строка 32:
 
<tex> \Longleftarrow </tex>:
 
<tex> \Longleftarrow </tex>:
  
Пусть <tex>L</tex> {{---}} полуразрешимый язык. Тогда для него существует программа <tex>p</tex>, результат которой равен <tex>1</tex> для любого слова из <tex>L</tex>. Чтобы программа <tex>p</tex> не зависала на словах, которые не принадлежат <tex>L</tex>, будем запускать ее с тайм-лимитом. Для поиска <tex>i</tex>-го слова из языка <tex>L</tex> будем перебирать <tex>k</tex> {{---}} тайм-лимит с которым будем запускать программу <tex>p</tex>. Таким образом существует программа <tex>g_0</tex>, которая выводит <tex>i</tex> слово языка <tex>L</tex> с повторениями. Для того, чтобы выводить слова без повторений, заведем множество <tex>U</tex>, в котором будем хранить уже выведенные слова. Программа <tex>g</tex> доказывает, что <tex>L</tex> является перечислимым языком.
+
:Пусть <tex>L</tex> {{---}} полуразрешимый язык. Тогда для него существует программа <tex>p</tex>, результат которой равен <tex>1</tex> для любого слова из <tex>L</tex>. Чтобы программа <tex>p</tex> не зависала на словах, которые не принадлежат <tex>L</tex>, будем запускать ее с тайм-лимитом. Для поиска <tex>i</tex>-го слова из языка <tex>L</tex> будем перебирать <tex>k</tex> {{---}} тайм-лимит с которым будем запускать программу <tex>p</tex>. Таким образом существует программа <tex>g_0</tex>, которая выводит <tex>i</tex> слово языка <tex>L</tex> с повторениями. Для того, чтобы выводить слова без повторений, заведем множество <tex>U</tex>, в котором будем хранить уже выведенные слова. Программа <tex>g</tex> доказывает, что <tex>L</tex> является перечислимым языком.
<code>
+
: <code>
 
  <tex>{\bf g_0}</tex>(i):
 
  <tex>{\bf g_0}</tex>(i):
 
   <tex>cnt = 0</tex>
 
   <tex>cnt = 0</tex>

Версия 18:46, 19 ноября 2016

Основные определения

Определение:
Полуразрешимый язык (англ. semi-decidable language) — язык, для которого существует программа [math]p[/math] такая, что
  • [math]\forall x \in L \Leftrightarrow p(x)=1[/math],
  • [math]\forall x \notin L \Leftrightarrow p(x)=0[/math] или зависнет.


Определение:
Перечислимый язык (англ. recursively enumerable language) — язык, для которого существует программа [math]g[/math] такая, что [math]g(i) = x_i, L = \{x_1, x_2, .., x_n, ..\}[/math]. Язык [math]L[/math] называется коперечислимым (англ. co-enumerable), если [math]\overline L[/math] — перечислимый. Класс всех перечислимых языков называется [math] \mathrm{RE} [/math], а всех коперечислимих [math] \mathrm{co}[/math]-[math]\mathrm{RE}[/math] .


Определение:
Пусть имеется некоторая программа [math]p[/math], которая может либо завершиться за конечное время и что-то вернуть, либо зависнуть. Запуск программы [math]p[/math] с тайм-лимитом (англ. time limit) [math]TL[/math] будем обозначать как [math]p|_{TL}[/math] и иметь в виду следующее: если за [math]TL[/math] операций программа [math]p[/math] корректно завершилась и что-то вернула, то [math]p|_{TL}[/math] вернёт то же самое; если же за [math]TL[/math] операций программа [math]p[/math] не успела завершиться, то [math]p|_{TL}[/math] вернёт [math]\bot[/math] (символ зависания).


Теорема:
[math]L[/math] — перечислимый [math]\Leftrightarrow L[/math] — полуразрешимый.
Доказательство:
[math]\triangleright[/math]

[math] \Longrightarrow [/math]:

Пусть [math]L[/math] — перечислимый язык. Тогда для него существует программа [math]g[/math], которая по номеру [math]i[/math] выводит слово из [math]L[/math]. Значит, для всех [math]x[/math] из [math]L[/math] путем перебора значений функции [math]g[/math] мы можем найти такое [math]i[/math], что [math] g(i) = x[/math]. Следовательно, существует программа [math]p[/math], такая, что [math]\forall x: x \in L \Leftrightarrow p(x)=1[/math]. Тогда [math]L[/math] является полуразрешимым языком.
[math]{\bf p}[/math](x):
  for [math] i = 1 ~ .. ~ \infty[/math]
    if [math] g(i) == [/math]x
      return [math] 1[/math]

[math] \Longleftarrow [/math]:

Пусть [math]L[/math] — полуразрешимый язык. Тогда для него существует программа [math]p[/math], результат которой равен [math]1[/math] для любого слова из [math]L[/math]. Чтобы программа [math]p[/math] не зависала на словах, которые не принадлежат [math]L[/math], будем запускать ее с тайм-лимитом. Для поиска [math]i[/math]-го слова из языка [math]L[/math] будем перебирать [math]k[/math] — тайм-лимит с которым будем запускать программу [math]p[/math]. Таким образом существует программа [math]g_0[/math], которая выводит [math]i[/math] слово языка [math]L[/math] с повторениями. Для того, чтобы выводить слова без повторений, заведем множество [math]U[/math], в котором будем хранить уже выведенные слова. Программа [math]g[/math] доказывает, что [math]L[/math] является перечислимым языком.
[math]{\bf g_0}[/math](i):
  [math]cnt = 0[/math]
  for [math] k = 1 ~ .. ~ \infty[/math]
    for [math] x \in \{x_1, x_2, .., x_k\}[/math]
      if [math] p|_k(x) == 1[/math]
        [math]cnt[/math]++
      if [math] cnt == i[/math]
        return [math] x[/math]

[math]{\bf g}[/math](i):
  [math]U = \emptyset[/math]
  for [math] j = 1 ~ .. ~ \infty[/math]
    [math]x = {\bf g_0}(j)[/math]
    if [math] x \notin U[/math]
      [math]cnt[/math]++
    if [math] cnt == i[/math]
      return [math] x[/math]
    [math]U.insert(x)[/math]
[math]\triangleleft[/math]
Теорема:
Любой разрешимый язык [math]L[/math] является перечислимым.
Доказательство:
[math]\triangleright[/math]
Любой разрешимый язык [math]L[/math] является полуразрешимым. Так как любой полуразрешимый язык является перечислимым, то [math]L[/math] является перечислимым.
[math]\triangleleft[/math]
Теорема:
[math]L[/math] — перечислим и коперечислим [math]\Rightarrow[/math] [math]L[/math]разрешим.
Доказательство:
[math]\triangleright[/math]
Рассмотрим полуразрешители для [math]L[/math] и [math]\overline L[/math] и одновременно запустим их для одного и того же элемента [math]x[/math]. [math]x[/math] принадлежит либо [math] L [/math], либо [math]\overline{L}[/math], поэтому один из полуразрешителей успешно отработает и не зависнет. Значит, мы за конечное время узнаем, лежит ли [math]x[/math] в [math]L[/math] или нет. Таким образом, мы построили разрешитель для [math]L[/math], то есть [math]L[/math] — разрешимый.
[math]\triangleleft[/math]

Примеры перечислимых языков

Утверждение:
Язык натуральных чисел перечислим.
[math]\triangleright[/math]

Приведём программу, перечисляющую язык натуральных чисел:

[math]p(i) {:} [/math]
  return i
[math]\triangleleft[/math]
Утверждение:
Язык чётных неотрицательных чисел перечислим.
[math]\triangleright[/math]

Приведём программу, перечисляющую язык чётных неотрицательных чисел:

[math]p(i) {:} [/math]
  return i * 2
[math]\triangleleft[/math]

Примеры коперечислимых языков

Утверждение:
Язык нечётных неотрицательных чисел коперечислим.
[math]\triangleright[/math]
[math]\overline L[/math] - язык чётных неотрицательных чисел. Так как язык чётных неотрицательных чисел перечислим, то и язык нечётных неотрицательных чисел тоже перечислим.
[math]\triangleleft[/math]

Примеры неперечислимых языков

Утверждение:
Язык пар [math]\langle n, bb(n)\rangle[/math] неперечислим.
[math]\triangleright[/math]
Функция busy beaver [math]bb(n)[/math] — невычислима, следовательно такой язык неперечислим.
[math]\triangleleft[/math]

Источники информации