Теорема о рекурсии — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теорема о неподвижной точке)
(Теорема о неподвижной точке)
Строка 81: Строка 81:
 
|statement= Пусть <tex>U</tex> {{---}} [[Диагональный_метод|универсальная функция]] для класса вычислимых функций одного аргумента, <tex>h</tex> {{---}} всюду определённая [[Вычислимые_функции|вычислимая функция]] одного аргумента. Тогда найдется такое <tex>n</tex>, что <tex>U_n=U_{h(n)}</tex>, то есть <tex>n</tex> и <tex>h(n)</tex> - номера одной функции.
 
|statement= Пусть <tex>U</tex> {{---}} [[Диагональный_метод|универсальная функция]] для класса вычислимых функций одного аргумента, <tex>h</tex> {{---}} всюду определённая [[Вычислимые_функции|вычислимая функция]] одного аргумента. Тогда найдется такое <tex>n</tex>, что <tex>U_n=U_{h(n)}</tex>, то есть <tex>n</tex> и <tex>h(n)</tex> - номера одной функции.
 
|proof=
 
|proof=
Начнём с доказательства леммы.
+
Введем на множестве натуральных чисел следующее отношение: <tex>x \equiv y \Leftrightarrow U_x = U_y</tex> и докажем вспомогательную лемму.
 
{{Лемма
 
{{Лемма
|statement= Пусть на натуральных числах задано отношение эквивалентности <tex>\equiv</tex>. Тогда следующие два утверждения не могут быть выполнены одновременно: <br>
+
|statement= Для всякой вычислимой функции <tex>f</tex> существует вычислимая и всюду определенная функция <tex>g</tex>, являющаяся ее <tex>\equiv</tex> {{---}} продолжением (это значит, что если <tex>f(n)</tex> определено, то <tex>g(n) \equiv f(n)</tex>).
# Пусть <tex>f</tex> {{---}} вычислимая функция. Тогда существует всюду определённое вычислимое <tex>\equiv</tex> {{---}} продолжение <tex>g</tex> функции <tex>f</tex>, то есть такая <tex>g</tex>, что <tex>D(g)=N</tex> и <tex>\forall x</tex> такого, что <tex>f(x) \ne \perp</tex>, выполнено <tex>f(x) \equiv g(x)</tex>.
+
|proof= Рассмотрим вычислимую функцию от двух аргументов <tex> V(n, x) = U(f(n), x)</tex>. Так как <tex>V</tex> — вычислимая, то существует вычислимая и всюду определенная функция <tex>s(n)</tex> такая, что: <tex>V(n, x) = U(s(n), x)</tex>.
# Найдётся такая всюду определенная вычислимая <tex>h</tex>, что <tex>\forall n </tex> выполнено <tex>h(n) \not\equiv n</tex>.
+
 
|proof=
+
Покажем, что <tex>s(n)</tex> будет являться <tex>\equiv</tex> {{---}} продолжением функции <tex>f(n)</tex>. Если <tex>f(n)</tex> определено, то <tex>s(n)</tex> вернет другой номер той же вычислимой функции. Если же <tex>f(n)</tex> не определено, то <tex>s(n)</tex> вернет номер нигде не определенной функции.
Приведем доказательство от противного. Пусть оба утверждения выполнены. <br>
+
Таким образом, мы нашли <tex>\equiv</tex> {{---}} продолжение для произвольно взятой вычислимой функции <tex>f</tex>.
Определим функцию <tex>f</tex> так: <tex>f(x)=U(x,x)</tex>. Заметим, что никакая всюду вычислимая функция не отличается от <tex>f</tex> всюду. <br> Согласно первому утверждению найдётся всюду определённое вычислимое <tex>\equiv</tex> {{---}} продолжение <tex>g</tex> функции <tex>f</tex>. <br> Определим функцию <tex>t</tex> так: <tex>t(x)=h(g(x))</tex>, где <tex>h</tex> {{---}} функция из второго утверждения. <br >Если <tex>f(x) \ne \perp</tex>, то <tex>f(x)=g(x) \ne h(g(x))=t(x)</tex>, то есть <tex>f(x) \ne t(x)</tex>. Если <tex>f(x)= \perp</tex>, то <tex>f(x) \ne t(x)</tex>, так как <tex>t</tex> всюду определена. Значит, <tex>f</tex> всюду отлична от <tex>t</tex>, получили противоречие.
 
 
}}
 
}}
Теперь определим отношение <tex>\equiv</tex> так: <tex>x \equiv y \Leftrightarrow U_x = U_y</tex>. Покажем, что для него выполнено первое утверждение леммы. <br> Для заданной <tex>f</tex> определим <tex>V(n,x) = U(f(n), x)</tex>. <br> Так как <tex>U</tex> {{---}} универсальная функция, то найдётся такая всюду определенная вычислимая функция <tex>s</tex>, что <tex>V(n,x) = U(s(n), x)</tex>. <br> Тогда  <tex>\forall x </tex> и <tex> n </tex> будет выполнено <tex>U(f(n), x) = U(s(n), x)</tex>. Значит, <tex>\forall n </tex> <tex> s(n) \equiv f(n)</tex>, то есть <tex>s</tex> {{---}} всюду определенное <tex>\equiv</tex> {{---}} продолжение <tex>f</tex>.
+
Для доказательства теоремы рассмотрим некоторую вычислимую функцию, от которой никакая вычислимая функция не может отличаться всюду. Такой будет, например <tex>f(x) = U(x, x)</tex> (действительно, если предположить, что существует вычислимая функция <tex>h(n)</tex>, всюду отличная от <tex>f(n) = U(n, n)</tex>, то нарушается определение универсальной функции.)
Значит, для нашего отношения эквивалентности второе утверждение леммы не верно, то есть для любого вычислимого всюду определенного <tex>h</tex> <tex> \exists n</tex> такое, что <tex>U_{h(n)} = U_n</tex>.
+
 
 +
Согласно доказанной нами лемме, существует вычислимая и всюду определенная функция <tex>g(x)</tex>, являющаяся <tex>\equiv</tex> {{---}} продолжением функции <tex>f(x)</tex>. Давайте зададим функцию <tex>t(x)</tex> следующим образом: <tex>t(x) = h(g(x))</tex>, где <tex>h(x)</tex> - всюду определенная, вычислимая функция, не имеющая <tex>\equiv</tex> {{---}} неподвижных точек.
 
}}
 
}}
Другими словами, нельзя найти алгоритма, преобразующего программы, который бы по каждой программе давал другую (не эквивалентную ей).
 
  
 
==Пример использования==
 
==Пример использования==

Версия 13:46, 4 декабря 2016

Теорема о рекурсии

Теорема (Клини, о рекурсии / Kleene's recursion theorem):
Пусть [math]V(n, x)[/math] — вычислимая функция. Тогда найдётся такая вычислимая [math]p[/math], что [math]\forall y[/math] [math]p(y) = V(p, y)[/math].
Доказательство:
[math]\triangleright[/math]

Приведем конструктивное доказательство теоремы. Пусть есть вычислимая [math]V(x,y)[/math]. Будем поэтапно строить функцию [math]p(y)[/math].
Предположим, что у нас в распоряжении есть функция [math]getSrc()[/math], которая вернет код [math]p(y)[/math]. Тогда саму [math]p(y)[/math] можно переписать так:

p(y){ 
     V(x,y) {...}

     main() {
         return V(getSrc(), y)
     }
 
     string getSrc() {...}
 }

Теперь нужно определить функцию [math]getSrc()[/math]. Предположим, что внутри [math]p(y)[/math] мы можем определить функцию [math]getOtherSrc()[/math], состоящую из одного оператора [math]return[/math], которая вернет весь предшествующий ей код. Тогда [math]p(y)[/math] перепишется так.

 p(y){ 
     V(x,y) {...}

     main() {
         return V(getSrc(), y)
     }
 
     string getSrc() {
         string src = getOtherSrc();
         return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}";
     }
 
     string getOtherSrc() {...} 
 }

Теперь [math]getOtherSrc()[/math] определяется очевидным образом, и мы получаем итоговую версию функции [math]p(y)[/math]

 p(y){ 
     V(x,y) {...}

     main() {
         return V(getSrc(), y)
     }
 
     string getSrc() {
         string src = getOtherSrc();
         return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}";
     }
 
     string getOtherSrc() {
         return "  p(y){             // Возвращаем весь предыдущий код
                    V(x,y) {...}

                     main() {
                         return V(getSrc(), y)
                     }
 
                     string getSrc() {
                         string src = getOtherSrc();
                         return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}";
                 }";
     } 
 }
[math]\triangleleft[/math]

Если говорить неформально, теорема о рекурсии утверждает, что внутри программы можно использовать ее код. Это упрощает доказательство некоторых теорем.

Приведем так же альтернативую формулировку теоремы и альтернативное (неконструктивное) доказательство.

Теорема о неподвижной точке

Теорема (Роджерс, о неподвижной точке / Rogers' fixed-point theorem):
Пусть [math]U[/math]универсальная функция для класса вычислимых функций одного аргумента, [math]h[/math] — всюду определённая вычислимая функция одного аргумента. Тогда найдется такое [math]n[/math], что [math]U_n=U_{h(n)}[/math], то есть [math]n[/math] и [math]h(n)[/math] - номера одной функции.
Доказательство:
[math]\triangleright[/math]

Введем на множестве натуральных чисел следующее отношение: [math]x \equiv y \Leftrightarrow U_x = U_y[/math] и докажем вспомогательную лемму.

Лемма:
Для всякой вычислимой функции [math]f[/math] существует вычислимая и всюду определенная функция [math]g[/math], являющаяся ее [math]\equiv[/math] — продолжением (это значит, что если [math]f(n)[/math] определено, то [math]g(n) \equiv f(n)[/math]).
Доказательство:
[math]\triangleright[/math]

Рассмотрим вычислимую функцию от двух аргументов [math] V(n, x) = U(f(n), x)[/math]. Так как [math]V[/math] — вычислимая, то существует вычислимая и всюду определенная функция [math]s(n)[/math] такая, что: [math]V(n, x) = U(s(n), x)[/math].

Покажем, что [math]s(n)[/math] будет являться [math]\equiv[/math] — продолжением функции [math]f(n)[/math]. Если [math]f(n)[/math] определено, то [math]s(n)[/math] вернет другой номер той же вычислимой функции. Если же [math]f(n)[/math] не определено, то [math]s(n)[/math] вернет номер нигде не определенной функции.

Таким образом, мы нашли [math]\equiv[/math] — продолжение для произвольно взятой вычислимой функции [math]f[/math].
[math]\triangleleft[/math]

Для доказательства теоремы рассмотрим некоторую вычислимую функцию, от которой никакая вычислимая функция не может отличаться всюду. Такой будет, например [math]f(x) = U(x, x)[/math] (действительно, если предположить, что существует вычислимая функция [math]h(n)[/math], всюду отличная от [math]f(n) = U(n, n)[/math], то нарушается определение универсальной функции.)

Согласно доказанной нами лемме, существует вычислимая и всюду определенная функция [math]g(x)[/math], являющаяся [math]\equiv[/math] — продолжением функции [math]f(x)[/math]. Давайте зададим функцию [math]t(x)[/math] следующим образом: [math]t(x) = h(g(x))[/math], где [math]h(x)[/math] - всюду определенная, вычислимая функция, не имеющая [math]\equiv[/math] — неподвижных точек.
[math]\triangleleft[/math]

Пример использования

Используя теорему о рекурсии, приведём простое доказательство неразрешимости языка [math]L=\{p|p(\epsilon)=\perp\}[/math].

Лемма:
Язык [math]L=\{p|p(\epsilon)=\perp\}[/math] неразрешим.
Доказательство:
[math]\triangleright[/math]

Предположим обратное, тогда существует программа [math]r[/math] разрещающая [math]L[/math]. Рассмотрим следущую программу:

p(x)
  if r(p)
     return 1
  while true

Пусть [math]p(\epsilon)=\perp[/math]. Тогда условие [math]r(p)[/math] выполняется и [math]p(\epsilon)=1[/math]. Противоречие. Если [math]p(\epsilon) \ne \perp[/math], то [math]r(p)[/math] не выполняется и [math]p(\epsilon)=\perp[/math]. Противоречие.
[math]\triangleleft[/math]

Доказательство теоремы Успенского-Райса с использованием теоремы о рекурсии:

Теорема:
Язык никакого нетривиального свойства не является разрешимым.
Доказательство:
[math]\triangleright[/math]

Пусть [math]F \subset RE, \varnothing \not= F \not= RE[/math]. Предположим, что язык свойства [math]F[/math] разрешается программой [math]d[/math]. Пусть [math]f \in L(F), g \not\in L(F)[/math]. Напишем следующую программу:

Q(x,y)
  if d(x)
    return g(y)
  else
    return f(y)

По теореме о рекурсии, [math]\exists p \; \forall y \; p(y) = Q(p,y)[/math].

Если [math]p \in L(F)[/math], то [math]Q(p,y) = g(y) \Rightarrow p(y) = g(y) \Rightarrow p \not\in L(F)[/math].

Если же [math]p \not\in L(F)[/math], то [math]Q(p,y) = f(y) \Rightarrow p(y) = f(y) \Rightarrow p \in L(F)[/math].

В обоих случаях получаем противоречие.
[math]\triangleleft[/math]

Источники

  • Wikipedia — Kleene's recursion theorem
  • Верещагин Н. К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции — М.: МЦНМО, 1999 - С. 176
  • Kleene, Stephen On notation for ordinal numbers - The Journal of Symbolic Logic, 1938 - С. 150-155