Приведение грамматики к ослабленной нормальной форме Грейбах — различия между версиями
Zernov (обсуждение | вклад) (→Пример) |
Zernov (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition=Грамматикой в '''нормальной форме Грейбах''' (англ. ''Greibach normal form'') называется [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободная грамматика]], в которой могут содержаться только правила одного из следующих типов: | |definition=Грамматикой в '''нормальной форме Грейбах''' (англ. ''Greibach normal form'') называется [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободная грамматика]], в которой могут содержаться только правила одного из следующих типов: | ||
− | + | <tex> A \rightarrow a\gamma </tex> | |
− | + | ||
− | где <tex> a </tex> {{---}} терминал, <tex> A </tex> {{---}} нетерминал, <tex> S </tex> {{---}} стартовый нетерминал (причём он не должен встречаться в правых частях правил), <tex> \varepsilon </tex> {{---}} пустая строка, <tex> \gamma </tex> {{---}} строка из не более, чем двух нетерминалов. | + | <tex> S \rightarrow \varepsilon </tex> |
+ | где <tex> a </tex> {{---}} терминал, <tex> A </tex> {{---}} нетерминал, <tex> S </tex> {{---}} стартовый нетерминал (причём он не должен встречаться в правых частях правил), <tex> \varepsilon </tex> {{---}} пустая строка, <tex> \gamma </tex> {{---}} строка из не более, чем двух нетерминалов. Таким образом, пустая строка выводится только из стартового нетерминала. Однако он по-прежнему может участвовать в формировании правил первого типа. (Это утверждение применимо и к ослабленной нормальной форме Грейбах) | ||
}} | }} | ||
{{Определение | {{Определение | ||
|definition=Грамматикой в '''ослабленной нормальной форме Грейбах''' (англ. ''Greibach weak normal form'') называется [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободная грамматика]], в которой могут содержаться только правила одного из следующих типов: | |definition=Грамматикой в '''ослабленной нормальной форме Грейбах''' (англ. ''Greibach weak normal form'') называется [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободная грамматика]], в которой могут содержаться только правила одного из следующих типов: | ||
− | + | <tex> A \rightarrow a\gamma </tex> | |
− | + | ||
+ | <tex> S \rightarrow \varepsilon </tex> | ||
где <tex> a </tex> {{---}} терминал, <tex> A </tex> {{---}} нетерминал, <tex> S </tex> {{---}} стартовый нетерминал (причём он не должен встречаться в правых частях правил), <tex> \varepsilon </tex> {{---}} пустая строка, <tex> \gamma </tex> {{---}} строка из произвольного числа терминалов и нетерминалов. | где <tex> a </tex> {{---}} терминал, <tex> A </tex> {{---}} нетерминал, <tex> S </tex> {{---}} стартовый нетерминал (причём он не должен встречаться в правых частях правил), <tex> \varepsilon </tex> {{---}} пустая строка, <tex> \gamma </tex> {{---}} строка из произвольного числа терминалов и нетерминалов. | ||
}} | }} | ||
+ | |||
== Приведение грамматики к ослабленной нормальной форме Грейбах == | == Приведение грамматики к ослабленной нормальной форме Грейбах == |
Версия 23:55, 6 декабря 2016
Определение: |
Грамматикой в нормальной форме Грейбах (англ. Greibach normal form) называется контекстно-свободная грамматика, в которой могут содержаться только правила одного из следующих типов:
где — терминал, — нетерминал, — стартовый нетерминал (причём он не должен встречаться в правых частях правил), — пустая строка, — строка из не более, чем двух нетерминалов. Таким образом, пустая строка выводится только из стартового нетерминала. Однако он по-прежнему может участвовать в формировании правил первого типа. (Это утверждение применимо и к ослабленной нормальной форме Грейбах) |
Определение: |
Грамматикой в ослабленной нормальной форме Грейбах (англ. Greibach weak normal form) называется контекстно-свободная грамматика, в которой могут содержаться только правила одного из следующих типов:
где — терминал, — нетерминал, — стартовый нетерминал (причём он не должен встречаться в правых частях правил), — пустая строка, — строка из произвольного числа терминалов и нетерминалов. |
Содержание
Приведение грамматики к ослабленной нормальной форме Грейбах
Теорема: |
Любую контекстно-свободную грамматику можно привести к ослабленной нормальной форме Грейбах. |
Доказательство: |
Рассмотрим контекстно-свободную грамматику . Для приведения её к нормальной ослабленной форме Грейбах нужно выполнить три шага. На каждом шаге мы строим новую грамматику, допускающую тот же язык, что и .
for i = n .. 1 for j = i + 1 .. n Для каждого правила вывода иззаменить каждое правило на . После каждой итерации главного цикла все правила для Таким образом, мы получили грамматику в ослабленной нормальной форме Грейбах, которая допускает тот же язык, что и исходная. (где ) будут иметь вид . Значит, после применения процедуры все правила грамматики будут иметь вид . |
Пример
Текущий шаг | Грамматика после применения правила |
---|---|
0. Исходная грамматика | |
1. Удаление | -правил|
2. Удаление стартового нетерминала из правых частей правил | |
3. Удаление левой рекурсии | |
4. Выполняем процедуру для правила | |
5. Выполняем процедуру для правила |
Асимптотика
Алгоритм состоит из трех шагов, сложность первого и последнего шага равны
и соответственно. Таким обзом, сложность алгоритма является , где второй член — сложность алгоритма удаления левой рекурсии.Применение
Простота доказательств
Использование нормальных форм существенно упрощает доказательство теорем. Например, использование нормальной формы Грейбах позволяет доказать, что для каждого контекстно-свободного языка (не содержащего
) существует автомат с магазинной памятью без переходов по .Разбор грамматики
Нормальная форма Холмского позволяет производить разбор грамматики. Например, с помощью алгоритма Кока-Янгера-Касами. В свою очередь, нормальная форма Грейбах позволяет использовать метод рекурсивного спуска, сложность которого является линейной, несмотря на возвраты.