Примеры сведения к задачам поиска потока — различия между версиями
Sultazat (обсуждение | вклад) м (→Лабиринт Минотавра) |
Sultazat (обсуждение | вклад) м (→См.также) |
||
| Строка 40: | Строка 40: | ||
== См.также == | == См.также == | ||
* [[Схема алгоритма Диница]] | * [[Схема алгоритма Диница]] | ||
| + | * [[Алгоритм масштабирования потока]] | ||
== Источники == | == Источники == | ||
* [https://icpc.baylor.edu/regionals/finder/west-siberian-subregional-2016 The 2016 West Siberian Subregional Contest] | * [https://icpc.baylor.edu/regionals/finder/west-siberian-subregional-2016 The 2016 West Siberian Subregional Contest] | ||
Версия 21:58, 25 декабря 2016
Рассмотрим несколько задач, которые решаются путём сведения к задаче о поиске максимального потока в сети.
Содержание
Пример №1. Лабиринт Минотавра
| Задача: |
| Дано поле размером , некоторые клетки поля закрашены. В одной из незакрашенных клеток поля стоит Минотавр, он умеет ходить только по незакрашенным клеткам (из текущей клетки он может пойти только в ту клетку, с которой имеет общую сторону). Какое минимальное количество клеток нужно закрасить, чтобы Минотавр не смог выбраться за пределы поля? |
Сразу скажем, что выбраться за пределы поля эквивалентно тому, что Минотавр может дойти до какой-либо крайней клетки.
Решение и доказательство корректности
Покажем то, что минимальное количество клеток, которое нужно закрасить, равно максимальному количеству клеточно-непересекающихся путей из позиции Минотавра до крайних клеток поля. Очевидно, что ответ не больше, чем количество всех путей от Минотавра до крайних клеток. Сделаем ещё более строгое неравенство: ответ не больше, чем максимальное количество клеточно-непересекающихся путей, т.к. если взять какие-нибудь 2 пересекающихся пути и закрасить клетку в позиции, где они пересекаются, то блокируется выход за пределы поля сразу по 2 этим путям. С другой стороны, если закрасить клетку на каком-то из путей, то блокируется только этот путь, т.к. были взяты клеточно-непересекающиеся пути. Значит, ответ не меньше, чем количество таких путей. В итоге получаем то, что и хотели доказать.
Переход к сети
Рассмотрим сеть, в которой вершинам будут соответствовать незакрашенные клетки поля, соседние незакрашенные клетки соединим ориентированными рёбрами с пропускной способностью 1. В качестве истока возьмём вершину, которой соответствует клетка Минотавр. Добавим в граф ещё одну вершину — сток, добавим рёбра из вершин, соответствующим крайним клеткам поля, в сток с пропускной способностью 1. Чтобы пути не пересекались по клеткам, раздвоим каждую вершину графа на 2 вершины: в одну будут только входить рёбра, из другой — только выходить рёбра, и сами эти вершины соединим ребром с пропускной способностью 1.
Используя алгоритм Форда-Фалкерсона, найдём максимальный поток в сети. Согласно теореме о декомпозиции, нахождение максимального потока эквивалентно тому, что мы нашли максимальное количество путей из истока в сток. Т.е. требуемый ответ на задачу равен максимальному потоку.
Оценка времени работы
Время работы алгоритма Форда-Фалкерсона . Первое замечание: (это следует из того, что из каждой вершины исходит не более 4 рёбер), т.е. . Второе замечание: ответ не превосходит 4, т.к. можно закрасить клетку слева, справа, сверху и снизу от позиции Минотавра и он не сможет никуда двигаться, поэтому можно считать константой. Итоговое время работы .


