Наибольший общий делитель — различия между версиями
(→Определение) |
(→Связь с наименьшим общим кратным) |
||
Строка 52: | Строка 52: | ||
Пусть <tex>a</tex> и <tex>b</tex> {{---}} целые числа. Тогда <tex>\gcd(a, b) \cdot \text{lcm}(a, b) = a \cdot b</tex>. | Пусть <tex>a</tex> и <tex>b</tex> {{---}} целые числа. Тогда <tex>\gcd(a, b) \cdot \text{lcm}(a, b) = a \cdot b</tex>. | ||
|proof= | |proof= | ||
− | По [[#l001 | утверждению о НОД]] и [[#l002 | утверждению о НОК]], пользуясь тем, что <tex>\max(\alpha, \beta) + \min(\alpha, \beta) = \alpha + \beta</tex>, получаем | + | По [[#l001 | утверждению о НОД]] и [[#l002 | утверждению о НОК]], пользуясь тем, что <tex>\max(\alpha, \beta) + \min(\alpha, \beta) = \alpha + \beta</tex>, получаем нашу лемму. |
}} | }} | ||
Версия 20:06, 30 января 2017
Содержание
Определение
Определение: |
Наибольшим общим делителем (англ. | — greatest common divisor) для двух целых чисел и называется наибольшее натуральное , такое что делится на и делится на . Более формально,
Наибольший общий делитель существует и однозначно определён, если хотя бы одно из чисел или не ноль.
Понятие наибольшего общего делителя естественным образом обобщается на наборы из более чем двух целых чисел:
Определение: |
Наибольший общий делитель для целочисленного множества | определяется как
Существует определение НОД через разложение числа на простые множители:
Утверждение: |
Пусть и - натуральные числа. Тогда |
Очевидно, что в таком случае Пусть и на делятся на . Проверим его максимальность. Пусть существует , такое что и делятся на . Тогда оно необходимо будет раскладываться на те же простые множители, что и . . Значит, существует . Из этого следует, что либо , либо . Но в первом случае, не окажется делителем , а во втором — . |
Связь с наименьшим общим кратным
Определение: |
Наименьшим общим кратным (англ. | — least common multiple) для двух чисел и называется наименьшее натуральное число, которое делится на и без остатка. Более формально
Существует представление НОК через разложение числа на простые множители:
Утверждение: |
Пусть и - натуральные числа. Тогда |
Доказательство полностью аналогично доказательству утверждения о НОД, с той лишь разницей, что мы заменяем на , а знаки неравенств — на противоположные. |
Наибольший общий делитель связан с наименьшим общим кратным следующим равенством:
Лемма: |
Пусть и — целые числа. Тогда . |
Доказательство: |
По утверждению о НОД и утверждению о НОК, пользуясь тем, что , получаем нашу лемму. |
Алгоритм Евклида
Стандартный алгоритм Евклида
Пусть
и — целые числа, не равные одновременно нулю, и последовательность чиселопределена тем, что каждое
— это остаток от деления предпредыдущего числа на предыдущее, а предпоследнее делится на последнее нацело, то естьТогда НОД(a,b), наибольший общий делитель
и , равен , последнему ненулевому члену этой последовательности.Существование таких
, то есть возможность деления с остатком на для любого целого и целого , доказывается индукцией по m.Корректность этого алгоритма вытекает из следующих двух утверждений:
Лемма: |
Пусть , тогда |
Доказательство: |
Пусть k — любой общий делитель чисел a и b, не обязательно максимальный, тогда ; где и — целые числа из определения.
|
Лемма: |
для любого ненулевого |
Проще сформулировать алгоритм Евклида так: если даны натуральные числа
и и, пока получается положительное число, по очереди вычитать из большего меньшее, то в результате получится НОД.Расширенный алгоритм Евклида
Формулы для
могут быть переписаны следующим образом:здесь s и t целые. Это представление наибольшего общего делителя называется соотношением Безу, а числа s и t — коэффициентами Безу. Соотношение Безу является ключевым в доказательстве леммы Евклида и основной теоремы арифметики.
Связь с цепными дробями
Отношение
допускает представление в виде цепной дроби:- .
При этом цепная дробь без последнего члена равна отношению коэффициентов Безу
, взятому со знаком минус:- .