Панциклический граф — различия между версиями
(Случаи для проверки длины ребра) |
|||
Строка 29: | Строка 29: | ||
Без потери общности пусть <tex> v_x = v_n </tex> Рассмотрим <tex> 2|E| = \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{(n - 1)/2} (deg(v_{2i-1}) + deg(v_{2i})) + deg(v_n) \leqslant \genfrac{}{}{}{}{n(n-1)}{2} + \genfrac{}{}{}{}{n-1}{2} < </tex> <tex> \genfrac{}{}{}{}{n^2}{2} </tex>, то есть <tex> |E| < \genfrac{}{}{}{}{n^2}{2} </tex>, но по условию <tex> |E| \geqslant n^2/4 </tex> - получили противоречие. Таким образом <tex> n </tex> является четным. Тогда верно, что <tex> 2|E| \leqslant \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{n/2} (deg(v_{2i-1}) + deg(v_{2i})) \leqslant \genfrac{}{}{}{}{n^2}{2} </tex>, а так как по условию <tex> |E| \geqslant n^2/4 </tex>, то <tex> |E| = \genfrac{}{}{}{}{n^2}{4} </tex>. Данное равенство достигается, если верно, что: | Без потери общности пусть <tex> v_x = v_n </tex> Рассмотрим <tex> 2|E| = \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{(n - 1)/2} (deg(v_{2i-1}) + deg(v_{2i})) + deg(v_n) \leqslant \genfrac{}{}{}{}{n(n-1)}{2} + \genfrac{}{}{}{}{n-1}{2} < </tex> <tex> \genfrac{}{}{}{}{n^2}{2} </tex>, то есть <tex> |E| < \genfrac{}{}{}{}{n^2}{2} </tex>, но по условию <tex> |E| \geqslant n^2/4 </tex> - получили противоречие. Таким образом <tex> n </tex> является четным. Тогда верно, что <tex> 2|E| \leqslant \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{n/2} (deg(v_{2i-1}) + deg(v_{2i})) \leqslant \genfrac{}{}{}{}{n^2}{2} </tex>, а так как по условию <tex> |E| \geqslant n^2/4 </tex>, то <tex> |E| = \genfrac{}{}{}{}{n^2}{4} </tex>. Данное равенство достигается, если верно, что: | ||
− | + | [[Файл:Circle 3.jpg|800px|right]] | |
+ | *<tex> j + l - 1 \leqslant k \leqslant j + l - 2 </tex> : <tex> (v_j, v_k) \in E </tex> и <tex>(v_{j+1}, v_{k-l+3}) \notin E </tex> | ||
+ | |||
+ | *<tex> j + 2 \leqslant k \leqslant j + l - 2 </tex> : <tex>(v_j, v_k) \in E </tex> и <tex>(v_{j+1}, v_{k-l+1}) \notin E </tex> | ||
+ | |||
+ | Пусть <tex> G </tex> не <tex> K_{n/2, n/2} </tex>, тогда ... | ||
+ | |||
+ | # <tex> 4 \leqslant k \leqslant n - l </tex> <br> <tex> (v_j, v_{j+k}) \in E \Rightarrow (v_{j+1}, v_{j+k+l-3}) \notin E \Rightarrow (v_{j+2}, v_{j+k}) \in E </tex> | ||
+ | # <tex> n - l + 2 \leqslant k \leqslant 2n - 2l </tex> <br> <tex> (v_j, v_{j+k}) \in E \Rightarrow (v_{j-1}, v_{j+k+l-1}) \notin E \Rightarrow (v_{j-2}, v_{j+k+2l-4}) \in E </tex> | ||
+ | # <tex> 2n - 2l + 2 \ leqslant k \leqslant n - 2 </tex> <br> <tex> (v_j, v_{j+k}) \in E \Rightarrow (v_{j-1}, v_{j+k+l-1}) \notin E \Rightarrow (v_{j-2}, v_{j+k+2l-2}) \in E </tex> | ||
− | |||
− | |||
}} | }} | ||
Строка 41: | Строка 48: | ||
<tex>G = <V, E> </tex> {{---}} гамильтонов граф, <tex>|V| = n, v_1 v_2 v_3 \ldots v_n v_1 </tex> {{---}} его гамильтонов цикл, для которого выполняется неравенство <tex> deg(v_1) + deg(v_n) \geqslant n </tex>. <br> | <tex>G = <V, E> </tex> {{---}} гамильтонов граф, <tex>|V| = n, v_1 v_2 v_3 \ldots v_n v_1 </tex> {{---}} его гамильтонов цикл, для которого выполняется неравенство <tex> deg(v_1) + deg(v_n) \geqslant n </tex>. <br> | ||
Тогда <tex> G </tex> {{---}} панциклический граф, двудольный граф или граф, в котором нет только цикла длины <tex>(n-1)</tex>. | Тогда <tex> G </tex> {{---}} панциклический граф, двудольный граф или граф, в котором нет только цикла длины <tex>(n-1)</tex>. | ||
+ | |||
+ | |||
}} | }} | ||
Версия 17:11, 4 декабря 2017
Определение: |
Панциклический граф (англ. pancyclic graph) — граф, в котором есть циклы всех длин от | до . Если граф содержит все циклы от до , то такой граф называют -панциклическим.
Теорема (J. A. Bondy): |
Тогда верно одно из двух утверждений:
|
Доказательство: |
Обозначим как гамильтонов цикл в графе . Для простоты расположим на окружности, тогда ребра не принадлежащие можно считать хордами.Пусть в графе нет цикла длины , (по условию в графе существует гамильтонов цикл, длина которого равна ). Рассмотрим две соседний вершины и вместе с ними рассмотрим следующие пары:Для таких, что рассмотрим пары ( ) и ( )Для таких, что рассмотрим пары ( ) и ( )При добавлении таких пар ребер в графе появляется цикл длины , а значить в может входить максимум одно ребро из таких пар. Тогда можно утверждать, что .Докажем методом от противного, что — четно. Пусть является нечетным, тогда из рассуждений выше существует вершина , для которое верно, что . Пусть это не так, тогда , значит , то есть мы получили противоречие с тем, что . Без потери общности пусть Рассмотрим , то есть , но по условию - получили противоречие. Таким образом является четным. Тогда верно, что , а так как по условию , то . Данное равенство достигается, если верно, что:
Пусть не , тогда ... |
Теорема (Schmeichel & Hakimi): |
Тогда — панциклический граф, двудольный граф или граф, в котором нет только цикла длины . |