Панциклический граф — различия между версиями
(Доказательство теоремы J Bondy завершено) |
(Убрал теорему Schmeichel & Hakimi, добавил утверждение с теоремой Оре) |
||
Строка 16: | Строка 16: | ||
[[Файл:Circle 1.jpg|200px|left]] [[Файл:Circle 2.jpg|200px|right]] | [[Файл:Circle 1.jpg|200px|left]] [[Файл:Circle 2.jpg|200px|right]] | ||
− | Обозначим как <tex> C=v_1 v_2 v_3 \ldots v_n </tex> гамильтонов цикл в графе <tex> G </tex>. Для простоты расположим <tex> C </tex> на окружности | + | Обозначим как <tex> C=v_1 v_2 v_3 \ldots v_n </tex> гамильтонов цикл в графе <tex> G </tex>. Для простоты расположим <tex> C </tex> на окружности. |
Пусть в графе нет цикла длины <tex> l </tex>, <tex> 3 \leqslant l \leqslant n-1 </tex> (по условию в графе существует гамильтонов цикл, длина которого равна <tex> n </tex>). Рассмотрим две соседние вершины <tex> v_i v_{i+1} </tex> и вместе с ними рассмотрим следующие пары: | Пусть в графе нет цикла длины <tex> l </tex>, <tex> 3 \leqslant l \leqslant n-1 </tex> (по условию в графе существует гамильтонов цикл, длина которого равна <tex> n </tex>). Рассмотрим две соседние вершины <tex> v_i v_{i+1} </tex> и вместе с ними рассмотрим следующие пары: | ||
Строка 45: | Строка 45: | ||
}} | }} | ||
− | {{ | + | {{Утверждение |
− | | | + | |id = statement |
− | |statement= | + | |statement = <tex>G(V, E), |V| = n , |E| = m, \forall (u, v) \notin E : deg(u) + deg(v) \geqslant n </tex> |
− | <tex>G(V, E) </tex> {{---}} | + | Тогда верно одно из двух утверждений: |
− | + | #<tex> G </tex> {{---}} панциклический граф | |
+ | #<tex> G </tex> = <tex>K_{n / 2, n / 2}</tex> | ||
+ | |proof=По [https://neerc.ifmo.ru/wiki/index.php?title=%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9E%D1%80%D0%B5 теореме Оре] <tex> G </tex> - гамильтонов граф. Покажем, что <tex> m \geqslant n^2/4 </tex>. Пусть <tex> k </tex> - минимальная степень вершины в графе. | ||
+ | # <tex> k \geqslant n/2 </tex>, тогда <tex> 2m = \sum\limits_{i=1}^n deg(v_i) >= \sum\limits_{i=1}^n k = k * n \geqslant n^2/2 </tex> | ||
+ | # <tex> k < n/2 </tex>. Пусть существует x вершин, так что их степени равны <tex> k </tex>, тогда они все должна быть связаны, так как иначе мы получим противоречие с утверждением теоремы <tex> \forall (u, v) \notin E : deg(u) + deg(v) \geqslant n </tex>. Понятно, что <tex> x \leqslant k + 1 </tex>, но так как граф является гамильтоновым, то он связен, а значит <tex> x < k + 1 </tex> ... | ||
+ | <tex> m \geqslant \genfrac{}{}{}{}{1}{2}((n-k-1)(n-k)+k^2+k+1) = \genfrac{}{}{}{}{1}{2}(n^2 - n(2k + 1) + 2k^2 + 2k + 1) \geqslant \genfrac{}{}{}{}{n^2+1}{4} </tex> | ||
+ | Итоге граф подходит под условия теоремы. | ||
}} | }} | ||
Версия 18:56, 5 декабря 2017
Определение: |
Панциклический граф (англ. pancyclic graph) — граф, в котором есть циклы всех длин от | до . Если граф содержит все циклы от до , то такой граф называют -панциклическим.
Предпосылки к теореме. Теорема Мантела(частный случай теоремы Турана) утверждает, что для любой граф на вершинах, у которого количество ребер не меньше , либо содержит треуголник либо является .
Теорема (J. A. Bondy): |
Тогда верно одно из двух утверждений:
|
Доказательство: |
Обозначим как гамильтонов цикл в графе . Для простоты расположим на окружности.Пусть в графе нет цикла длины , (по условию в графе существует гамильтонов цикл, длина которого равна ). Рассмотрим две соседние вершины и вместе с ними рассмотрим следующие пары:Для таких, что рассмотрим пары ( ) и ( )Для таких, что рассмотрим пары ( ) и ( )При добавлении таких пар ребер в графе появляется цикл длины , а значить в может входить максимум одно ребро из таких пар. Тогда можно утверждать, что .Докажем методом от противного, что — четно. Пусть является нечетным, тогда из рассуждений выше существует вершина , для которое верно, что . Пусть это не так, тогда , значит , то есть мы получили противоречие с тем, что . Без потери общности пусть Рассмотрим , то есть , но по условию - получили противоречие. Таким образом является четным. Тогда верно, что , а так как по условию , то . Данное равенство достигается, если верно, что:
Пусть не , тогда существует такое четное число , что в графе существует ребро . Докажем, что в таком случае существует ребро . Пусть это не так и минимальное четное , что больше двух, т.е. . Тогда существует три случая:
|
Утверждение: |
Тогда верно одно из двух утверждений:
|
По теореме Оре - гамильтонов граф. Покажем, что . Пусть - минимальная степень вершины в графе.
Итоге граф подходит под условия теоремы. |