Независимые случайные величины — различия между версиями
Строка 18: | Строка 18: | ||
[http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9)#.D0.9D.D0.B5.D0.B7.D0.B0.D0.B2.D0.B8.D1.81.D0.B8.D0.BC.D1.8B.D0.B5_.D1.81.D0.BB.D1.83.D1.87.D0.B0.D0.B9.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B5.D0.BB.D0.B8.D1.87.D0.B8.D0.BD.D1.8B Википедия] | [http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9)#.D0.9D.D0.B5.D0.B7.D0.B0.D0.B2.D0.B8.D1.81.D0.B8.D0.BC.D1.8B.D0.B5_.D1.81.D0.BB.D1.83.D1.87.D0.B0.D0.B9.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B5.D0.BB.D0.B8.D1.87.D0.B8.D0.BD.D1.8B Википедия] | ||
+ | |||
[http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node13.html http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node13.html] | [http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node13.html http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node13.html] |
Версия 00:02, 24 декабря 2010
Содержание
Определение
Независимые случайные величины -
и называются независимыми, если для и события и независимы. Иначе говоря, случайная величина называется независимой от величины , если вероятность получить при измерениях некоторое значение величины не зависит от значения величины .Замечание
Стоить отметить, что если
и - дискретные случайные величины, то достаточно рассматривать случай = , = . Но не достаточно рассматривать случай = . Покажем контр-пример для этого случая. Рассмотрим вероятностное пространство честная монета. = {0, 1}. Пусть (i) = i, (i) = i + 2. Если перебрать все значения ( = ), то можно показать, что события независимы. Но сами случайные величины не являются независимыми.Примеры
Честная игральная кость
Рассмотрим вероятностное пространство честная игральная кость
= {1, 2, 3, 4, 5, 6}. и - случайные величины. (i) = i % 2, (i) = [i 4]. Пусть = 0, = 0. Тогда P( 0) = 1/2, P( 0) = 1/2, P(( 0) ( 0)) = 1/4. Эти события независимы, а значит случайные величины и независимы.Пример Берншейтна
Рассмотрим правильный тетраэдр, три грани которого окрашены соответственно в красный, синий, зелёный цвета, а четвёртая грань содержит все три цвета. Событие А (соответственно, B, C) означает, что выпала грань, содержащая красный (соответственно, синий, зелёный) цвета. Вероятность каждого из этих событий равна 1/2, так как каждый цвет есть на двух гранях из четырёх. Вероятность пересечения любых двух из них равна 1/4, так как только одна грань из четырёх содержит два цвета. А так как 1/4 = 1/2 • 1/2, то все события попарно независимы. Но вероятность пересечения всех трёх тоже равна 1/4, а не 1/8, т.е. события не являются независимыми в совокупности.