Панциклический граф — различия между версиями
Строка 28: | Строка 28: | ||
Для <tex>k</tex> таких, что <tex> v_k </tex> лежит на дуге <tex> (v_{j + 2}, v_{j + 3}, v_{j + l - 2}) </tex> рассмотрим пары (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+1}</tex>) (см. рисунок справа) | Для <tex>k</tex> таких, что <tex> v_k </tex> лежит на дуге <tex> (v_{j + 2}, v_{j + 3}, v_{j + l - 2}) </tex> рассмотрим пары (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+1}</tex>) (см. рисунок справа) | ||
− | При добавлении таких пар ребер в графе появляется цикл длины <tex> l </tex> (выделены зеленым цветом на рисунках слева и справа). Действительно | + | При добавлении таких пар ребер в графе появляется цикл длины <tex> l </tex> (выделены зеленым цветом на рисунках слева и справа). Действительно: |
+ | *Рассмотрим первый случай, когда <tex> v_k </tex> лежит на дуге <tex> (v_{j + l - 1}, v_{j + l}, v_{j -1}) </tex> и существую ребра (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+3}</tex>). Длина цикла равна <tex> len((v_{k - l + 3}, v_{k - l + 4}, v_{k})) + 3 = k - (k - l + 3) + 3 = l - 3 + 3 = l </tex>. | ||
+ | *Рассмотрим второй случай, когда <tex> v_k </tex> лежит на дуге <tex> (v_{j + 2}, v_{j + 3}, v_{j + l - 2}) </tex> и существуют ребра (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+1}</tex>). Тогда длина цикла равна <tex> len((v_{k}, v_{k - 1}, v_{k - l + 1})) - 1 + 2 = k - (k - l + 1) - 1 + 2 = l - 1 - 1 + 2 = l </tex>. | ||
+ | Значит в <tex> G </tex> может входить максимум одно ребро из таких пар. Тогда можно утверждать, что <tex> deg(v_j) + deg(v_{j + 1}) \leqslant n </tex>. | ||
Докажем методом от противного, что <tex> n </tex> {{---}} четно. Пусть <tex> n </tex> является нечетным, тогда из рассуждений выше существует вершина <tex> v_x </tex>, для которое верно, что <tex> deg(v_x) \leqslant \genfrac{}{}{}{0}{n-1}{2} </tex>. | Докажем методом от противного, что <tex> n </tex> {{---}} четно. Пусть <tex> n </tex> является нечетным, тогда из рассуждений выше существует вершина <tex> v_x </tex>, для которое верно, что <tex> deg(v_x) \leqslant \genfrac{}{}{}{0}{n-1}{2} </tex>. |
Версия 16:25, 15 декабря 2017
Содержание
Основные определения
Определение: |
Панциклический граф (англ. pancyclic graph) — граф, в котором есть циклы всех длин от | до .
Определение: |
-панциклический граф (англ. -pancyclic graph) — граф содержит все циклы от до . |
Основная теорема
Теорема (J. A. Bondy): |
Пусть — гамильтонов граф, .
Тогда верно одно из двух утверждений:
|
Доказательство: |
Обозначим как гамильтонов цикл в графе . Для простоты расположим на окружности. Также подразумевается, что все индексы при вершинах берутся по модулю, то есть .Пусть в графе нет цикла длины , (по условию в графе существует гамильтонов цикл, длина которого равна ). Рассмотрим две соседние вершины и вместе с ними рассмотрим следующие пары:Для таких, что лежит на дуге рассмотрим пары ( ) и ( ) (см. рисунок слева)Для таких, что лежит на дуге рассмотрим пары ( ) и ( ) (см. рисунок справа)При добавлении таких пар ребер в графе появляется цикл длины (выделены зеленым цветом на рисунках слева и справа). Действительно:
Значит в может входить максимум одно ребро из таких пар. Тогда можно утверждать, что .Докажем методом от противного, что — четно. Пусть является нечетным, тогда из рассуждений выше существует вершина , для которое верно, что . Пусть это не так, тогда , значит , то есть мы получили противоречие с тем, что . Без потери общности пусть . Рассмотрим , то есть , но по условию — получили противоречие. Таким образом является четным. Тогда верно, что , а так как по условию , то . Данное равенство достигается, если верно, что:
Пусть не , тогда существует такое четное число , что в графе существует ребро , то есть существует цикл нечетной длины. Докажем, что в таком случае существует ребро . Пусть это не так и минимальное четное , что больше двух, то есть . Тогда существует три случая:
|
Следствие
Утверждение: |
Пусть
Тогда верно одно из двух утверждений:
|
По теореме Оре — гамильтонов граф. Покажем, что . Пусть — минимальная степень вершины в графе.
|