Независимые случайные величины — различия между версиями
Строка 9: | Строка 9: | ||
=== Честная игральная кость === | === Честная игральная кость === | ||
− | Рассмотрим вероятностное пространство честная игральная кость <tex>\Omega</tex> = {1, 2, 3, 4, 5, 6}. <tex>\xi</tex> и <tex>\eta</tex> - случайные величины. <tex>\xi</tex>(i) = i | + | Рассмотрим вероятностное пространство честная игральная кость <tex>\Omega</tex> = {1, 2, 3, 4, 5, 6}. <tex>\xi</tex> и <tex>\eta</tex> - случайные величины. <tex>\xi</tex>(i) = i % 2, <tex>\eta</tex>(i) = [i <tex>\geqslant</tex> 3]. Пусть <tex>\alpha</tex> = 0, <tex>\beta</tex> = 0. Тогда P(<tex>\xi \leqslant</tex> 0) = 1/2, P(<tex>\eta \leqslant</tex> 0) = 2/3, P((<tex>\xi \leqslant</tex> 0)<tex>\cap</tex>(<tex>\eta \leqslant</tex> 0)) = 1/3. Эти события независимы, а значит случайные величины <tex>\xi</tex> и <tex>\eta</tex> независимы. |
Версия 15:26, 24 декабря 2010
Содержание
Определение
Независимые случайные величины -
и называются независимыми, если для и события и независимы. Иначе говоря, случайная величина называется независимой от величины , если вероятность получить при измерениях некоторое значение величины не зависит от значения величины .Замечание
Стоить отметить, что если
и - дискретные случайные величины, то достаточно рассматривать случай = , = . Но не достаточно рассматривать случай = . Покажем контр-пример для этого случая. Рассмотрим вероятностное пространство честная монета. = {0, 1}. Пусть (i) = i, (i) = i + 2. Если перебрать все значения ( = ), то можно показать, что события независимы. Но сами случайные величины не являются независимыми.Примеры
Честная игральная кость
Рассмотрим вероятностное пространство честная игральная кость
= {1, 2, 3, 4, 5, 6}. и - случайные величины. (i) = i % 2, (i) = [i 3]. Пусть = 0, = 0. Тогда P( 0) = 1/2, P( 0) = 2/3, P(( 0) ( 0)) = 1/3. Эти события независимы, а значит случайные величины и независимы.