Барицентр дерева — различия между версиями
Anverk (обсуждение | вклад) |
Anverk (обсуждение | вклад) (→Основные свойства) |
||
Строка 16: | Строка 16: | ||
|id = lem2 | |id = lem2 | ||
|statement = Функция <tex> d(x) </tex> строго выпукла (вниз) на любом пути дерева. | |statement = Функция <tex> d(x) </tex> строго выпукла (вниз) на любом пути дерева. | ||
− | |proof = | + | |proof = Признак непрерывной строго выпуклой функции <ref>{{Cite web|url = https://ru.wikipedia.org/wiki/Выпуклая_функция|title = Выпуклая функция |author = |date = |publisher = Википедия}}</ref>: <tex> 2f(\displaystyle \frac{x+y}{2}) < f(x) + f (y) </tex>. Функция <tex> d(x) </tex>, вообще говоря, не является непрерывной, но её можно доопределить, чтобы на полуинтервале <tex> [a, b) </tex>, где <tex> a, b \in \mathbb {N} </tex> она принимала значение <tex> d(a) </tex> |
}} | }} | ||
Версия 21:25, 21 декабря 2017
Определение: |
Барицентром дерева (англ. Tree barycenter) называется вершина | , у которой величина минимальна, где расстояние между вершинами и в рёбрах.
Основные свойства
Лемма: |
Пусть существуют вершины соседи вершины . Тогда . |
Доказательство: |
Подвесим дерево за вершину . Тогда дерево можно представить в виде объединения трёх непересекающихся множеств: (поддеревья с корнем в вершинах соответственно) и остальных вершин (заметим, что все эти множества не пустые, так как содержат вершины соответственно). Найдём : . Это верно, так как все вершины из множества находятся от на одно ребро дальше, чем от , а вершины из множеств наоборот. Аналогично . Сложим эти уравнения и получим: . При этом . Таким образом, . |
Лемма: |
Функция строго выпукла (вниз) на любом пути дерева. |
Доказательство: |
Признак непрерывной строго выпуклой функции [1]: . Функция , вообще говоря, не является непрерывной, но её можно доопределить, чтобы на полуинтервале , где она принимала значение |
Теорема (о числе барицентров): |
В дереве не более барицентов |
Доказательство: |
Пусть в дереве есть хотя бы | барицентра: . Тогда рассмотрим путь, начинающийся в и заканчивающийся в . Так как , и функция строго выпукла, вершины являются соседями. В противном случае, или в этом пути есть вершина , или для всех вершин в пути . Первое предположение противоречит тому, что барицентры, а второе тому, что функция строго выпукла. Таким образом, вершины являются соседями. Аналогично доказывается, что вершины и соседи. Но в таком случае в дереве образовался цикл, что противоречит определению дерева. Таким образом, более барицентров в дереве быть не может.
Центр дерева
Определение: |
Центром дерева (англ. Tree center) называется вершина | , для которой величина минимальна.
Теорема: |
Для любого числа существует дерево, в котором расстояние между центром и барицентром дерева не меньше |
Доказательство: |
Рассмотрим дерево, построенное следующим образом: к вершине дерева Назовём лист бамбука вершиной проводим ребро, из которых проведено в листья дерева, а одно ребро продолжим достраивать как бамбук, расстояние в котором от листа до назовём числом . Докажем, что существуют такие , что расстояние между центром и барицентром не меньше . , а центр дерева . Тогда . Для удобства будем считать, что центр один, для этого будем рассматривать только нечётные Теперь будем искать, какое стоит выбрать, чтобы барицентром оказалась вершина . Найдём : . Рассмотрим вершину . Очевидно, что , так как все вершины, кроме удалены хотя бы на расстояние от вершины. В таком случае, . Мы получили, что , и является барицентром. Найдём такие что . Для этого можно взять любое . Таким образом, искомые существуют. |