Барицентр дерева — различия между версиями
Anverk (обсуждение | вклад) |
Anverk (обсуждение | вклад) |
||
Строка 16: | Строка 16: | ||
|id = lem2 | |id = lem2 | ||
|statement = Функция <tex> d(x) </tex> строго выпукла на любом пути в дереве. | |statement = Функция <tex> d(x) </tex> строго выпукла на любом пути в дереве. | ||
− | |proof = Признак непрерывной строго выпуклой функции <ref>https://ru.wikipedia.org/wiki/Выпуклая_функция</ref>: <tex> \forall x, y \in \mathbb{R} (x \neq y) </tex> выполнено <tex> 2f(\displaystyle \frac{x+y}{2}) < f(x) + f (y) </tex>. Будем называть функцию выпуклой на множестве натуральных чисел, если предыдущее неравенство выполнено для всех <tex> x, y \in \mathbb{N} </tex>. Доопределим функцию <tex> d(x) </tex> так, чтобы в точке <tex> a + \displaystyle \frac{1}{2} </tex>, где <tex> a \in \mathbb{N} </tex> она принимала значение, строго меньшее <tex> \displaystyle \frac{d(a)+d(a+1)}{2} </tex>. Это нужно сделать, потому что не всегда <tex> \displaystyle \frac{a+b}{2} \in \mathbb{N}</tex>. Докажем, что такая функция строго выпукла на множестве натуральных чисел. | + | |proof = Признак непрерывной строго выпуклой функции <ref>https://ru.wikipedia.org/wiki/Выпуклая_функция</ref>: <tex> \forall x, y \in \mathbb{R} (x \neq y) </tex> выполнено <tex> 2f(\displaystyle \frac{x+y}{2}) < f(x) + f (y) </tex>. Будем называть функцию строго выпуклой на множестве натуральных чисел, если предыдущее неравенство выполнено для всех <tex> x, y \in \mathbb{N} </tex>. Доопределим функцию <tex> d(x) </tex> так, чтобы в точке <tex> a + \displaystyle \frac{1}{2} </tex>, где <tex> a \in \mathbb{N} </tex> она принимала значение, строго меньшее <tex> \displaystyle \frac{d(a)+d(a+1)}{2} </tex>. Это нужно сделать, потому что не всегда <tex> \displaystyle \frac{a+b}{2} \in \mathbb{N}</tex>. Докажем, что такая функция строго выпукла на множестве натуральных чисел. |
Есть два случая: когда расстояние между <tex> x, y </tex> четное и нечетное. Докажем первый случай, второй доказывается аналогично. Пусть в пути от <tex> x </tex> до <tex> y </tex>, кроме них есть только вершина <tex> z </tex>. Тогда по предыдущей лемме неравенство очевидно. Пусть есть другие вершины, кроме <tex> x, y, z </tex>, тогда их не меньше двух, так как <tex> dist(x, y) </tex> четно. Рассмотрим тогда в этом пути вершины, которые находятся от <tex> z </tex> на расстоянии не больше <tex> 2 </tex> (пусть они идут в порядке: <tex> a b z c d </tex>), и докажем, что неравенство всё ещё сохраняется. <tex> 4d(z) < 2d(b) + 2d(c) < d(a) + d(z) + d(z) + d (b) \Rightarrow 2d(z) < d(a) + d (b)</tex>. Так будем увеличивать расстояние от <tex> z </tex> и придём к вершинам <tex> x, y </tex>, сохраняя инвариант. | Есть два случая: когда расстояние между <tex> x, y </tex> четное и нечетное. Докажем первый случай, второй доказывается аналогично. Пусть в пути от <tex> x </tex> до <tex> y </tex>, кроме них есть только вершина <tex> z </tex>. Тогда по предыдущей лемме неравенство очевидно. Пусть есть другие вершины, кроме <tex> x, y, z </tex>, тогда их не меньше двух, так как <tex> dist(x, y) </tex> четно. Рассмотрим тогда в этом пути вершины, которые находятся от <tex> z </tex> на расстоянии не больше <tex> 2 </tex> (пусть они идут в порядке: <tex> a b z c d </tex>), и докажем, что неравенство всё ещё сохраняется. <tex> 4d(z) < 2d(b) + 2d(c) < d(a) + d(z) + d(z) + d (b) \Rightarrow 2d(z) < d(a) + d (b)</tex>. Так будем увеличивать расстояние от <tex> z </tex> и придём к вершинам <tex> x, y </tex>, сохраняя инвариант. | ||
}} | }} |
Версия 13:50, 27 декабря 2017
Определение: |
Барицентром дерева (англ. tree barycenter) называется вершина | , у которой величина минимальна, где расстояние между вершинами и .
Содержание
Основные свойства
Лемма: |
Пусть существуют вершины соседи вершины . Тогда . |
Доказательство: |
Подвесим дерево за вершину Простой путь до вершины . Тогда дерево можно представить в виде объединения трёх непересекающихся множеств: поддеревья с корнями в вершинах соответственно и . Заметим, что все эти множества не пустые, так как содержат вершины соответственно. Найдём . из всегда единственный и представим следующим образом: . Значит, все вершины из множества находятся от на одно ребро дальше, чем от . Аналогично все вершины из множеств ближе на одно ребро к , чем к . Тогда . Аналогично . Сложим эти уравнения и получим: . При этом . Таким образом, . |
Лемма: |
Функция строго выпукла на любом пути в дереве. |
Доказательство: |
Признак непрерывной строго выпуклой функции [1]: выполнено . Будем называть функцию строго выпуклой на множестве натуральных чисел, если предыдущее неравенство выполнено для всех . Доопределим функцию так, чтобы в точке , где она принимала значение, строго меньшее . Это нужно сделать, потому что не всегда . Докажем, что такая функция строго выпукла на множестве натуральных чисел. Есть два случая: когда расстояние между четное и нечетное. Докажем первый случай, второй доказывается аналогично. Пусть в пути от до , кроме них есть только вершина . Тогда по предыдущей лемме неравенство очевидно. Пусть есть другие вершины, кроме , тогда их не меньше двух, так как четно. Рассмотрим тогда в этом пути вершины, которые находятся от на расстоянии не больше (пусть они идут в порядке: ), и докажем, что неравенство всё ещё сохраняется. . Так будем увеличивать расстояние от и придём к вершинам , сохраняя инвариант. |
Теорема (о числе барицентров): |
В дереве не более барицентов |
Доказательство: |
Пусть в дереве есть хотя бы | барицентра: . Тогда рассмотрим путь, начинающийся в и заканчивающийся в . Так как , и функция строго выпукла, вершины являются соседями. В противном случае, или в этом пути есть вершина , или для всех вершин в пути . Первое предположение противоречит тому, что барицентры, а второе тому, что функция строго выпукла. Таким образом, вершины являются соседями. Аналогично доказывается, что вершины и соседи. Но в таком случае в дереве образовался цикл, что противоречит определению дерева. Таким образом, более барицентров в дереве быть не может.
Центр дерева
Определение: |
Центром дерева (англ. Tree center) называется вершина | , для которой величина минимальна.
Теорема: |
Для любого числа существует дерево, в котором расстояние между центром и барицентром дерева не меньше |
Доказательство: |
Рассмотрим дерево, построенное следующим образом: к вершине дерева Для удобства будем считать, что центр один, для этого будем рассматривать только нечётные подвесим свободных вершин (в дереве они станут листьями) и бамбук, расстояние в котором от листа до назовём числом . Докажем, что существуют такие , что расстояние между центром и барицентром не меньше . Назовём лист бамбука вершиной , а центр дерева . Тогда . Теперь будем искать, какое стоит выбрать, чтобы барицентром оказалась вершина . Найдём : . Рассмотрим вершину . , так как все вершины, кроме удалены хотя бы на расстояние от вершины. В таком случае, . Мы получили, что , и является барицентром. Найдём такие что . Для этого можно взять любое . Таким образом, искомые существуют. |
Замечание: доказательство существования такого
, чтобы вершина была барицентром можно было проводить и менее строго, ведь очевидно, что при больших у барицентра должно быть минимальное расстояние до листьев. И такой вершиной и является .