Задача о динамической связности — различия между версиями
 (→Обобщение задачи для произвольных графов)  | 
				 (→Обобщение задачи для произвольных графов)  | 
				||
| Строка 31: | Строка 31: | ||
| − | Введём функцию <tex>l(e):e{\rightarrow}[0;\mathrm{\log} n]</tex> и назовём её ''уровнем ребра'' <tex>e</tex>. Будем рассматривать графы <tex>G_i=\langle V, E\rangle: {E|l(E) \geqslant i}</tex>. Очевидно, что <tex>G_{\mathrm{\log}n} \subseteq G_{\mathrm{\log}n-1} \subseteq ... \subseteq G_1 \subseteq G_0</tex>. Выделим в них остовные леса таким образом, чтобы <tex>F_{\mathrm{\log}n} \subseteq F_{\mathrm{\log}n-1} \subseteq ... \subseteq F_1 \subseteq F_0</tex>, где <tex>F_i</tex> {{---}} остовный лес графа <tex>G_i</tex>  | + | Введём функцию <tex>l(e):e{\rightarrow}[0;\mathrm{\log} n]</tex> и назовём её ''уровнем ребра'' <tex>e</tex>. Будем рассматривать графы <tex>G_i=\langle V, E\rangle: {E|l(E) \geqslant i}</tex>. Очевидно, что <tex>G_{\mathrm{\log}n} \subseteq G_{\mathrm{\log}n-1} \subseteq ... \subseteq G_1 \subseteq G_0</tex>. Выделим в них остовные леса таким образом, чтобы <tex>F_{\mathrm{\log}n} \subseteq F_{\mathrm{\log}n-1} \subseteq ... \subseteq F_1 \subseteq F_0</tex>, где <tex>F_i</tex> {{---}} остовный лес графа <tex>G_i</tex>.  | 
<!--При выполнении операции add  что-то хорошее, а с удалением не всё так просто.-->  | <!--При выполнении операции add  что-то хорошее, а с удалением не всё так просто.-->  | ||
Версия 23:54, 7 января 2018
| Задача: | 
Есть неориентированный граф из  вершин, изначально не содержащий рёбер. Требуется обработать  запросов трёх типов:
  | 
В этой статье будет приведено решение задачи online, то есть отвечать на get-запрос (проверять наличие пути между вершинами) мы будем сразу.
Содержание
Динамическая связность в лесах
Если задача такова, что в графе нет и не может быть циклов, то она сводится к задаче о связности в деревьях эйлерова обхода. Время работы каждого запроса для упрощённой задачи — .
Обобщение задачи для произвольных графов
Существуют задачи, в которых граф не обязательно на протяжении нашей работы после каждой операции добавления ребра остаётся лесом. Но мы можем в каждой компоненте связности выделить остовные деревья, которые образуют остовный лес.
Введём функцию и назовём её уровнем ребра . Будем рассматривать графы . Очевидно, что . Выделим в них остовные леса таким образом, чтобы , где — остовный лес графа .