Выброс — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «==Выброс== '''Выбросы'''(англ. outliers) - такая часть во входных данных, которая сильно выделяетс…»)
 
м (Выброс)
Строка 1: Строка 1:
 
==Выброс==
 
==Выброс==
'''Выбросы'''(англ. outliers) - такая часть во входных данных, которая сильно выделяется из общей выборки. Многие алгоритмы машинного обучения чувствительны к разбросу и распределению. Выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных.
+
'''Выброс'''(англ. outliers) - такая часть во входных данных, которая сильно выделяется из общей выборки. Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений атрибутов во входных данных. Выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных.
  
 
==Методы борьбы с выбросами==
 
==Методы борьбы с выбросами==

Версия 02:01, 29 ноября 2018

Выброс

Выброс(англ. outliers) - такая часть во входных данных, которая сильно выделяется из общей выборки. Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений атрибутов во входных данных. Выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных.

Методы борьбы с выбросами

См.также

Примечания

  1. https://machinelearningmastery.com/how-to-identify-outliers-in-your-data/