Выброс — различия между версиями
Fest (обсуждение | вклад) м (→Алгоритмы борьбы с выбросами) |
Fest (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
− | '''Выброс'''(англ. outliers) - такая часть во входных данных, которая сильно выделяется из общей выборки. Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений атрибутов во входных данных. Выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных. | + | '''Выброс'''(англ. ''outliers'') - такая часть во входных данных, которая сильно выделяется из общей выборки. Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений атрибутов во входных данных. Выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных. |
===Причины возникновения выбросов=== | ===Причины возникновения выбросов=== | ||
* Сбой работы оборудования | * Сбой работы оборудования | ||
Строка 9: | Строка 9: | ||
==Методы обнаружения и борьбы с выбросами== | ==Методы обнаружения и борьбы с выбросами== | ||
===Методы обнаружения выбросов=== | ===Методы обнаружения выбросов=== | ||
− | # Экстремальный анализ данных(англ. extreme value analysis). При таком анализе не применяются какие-либо специальные статистические методы. Обычно этот метод применим для одномерного случая. Алгоритм использования таков: | + | # Экстремальный анализ данных(англ. ''extreme value analysis''). При таком анализе не применяются какие-либо специальные статистические методы. Обычно этот метод применим для одномерного случая. Алгоритм использования таков: |
#* Визуализировать данные, используя диаграммы, гистограммы и _, для нахождения экстремальных значений. | #* Визуализировать данные, используя диаграммы, гистограммы и _, для нахождения экстремальных значений. | ||
#* Задействовать распределение, например Гауссовское, и найти значения, чье стандартное отклонение отличается в 2-3 раза от математического ожидания или в полтора раза от первой либо третьей квартилей. | #* Задействовать распределение, например Гауссовское, и найти значения, чье стандартное отклонение отличается в 2-3 раза от математического ожидания или в полтора раза от первой либо третьей квартилей. | ||
#* Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели. | #* Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели. | ||
− | # Апроксимирующий метод (англ. proximity method). Чуть более сложный метод, заключающийся в применении кластеризующих методов. | + | # Апроксимирующий метод (англ. ''proximity method''). Чуть более сложный метод, заключающийся в применении кластеризующих методов. |
#* Использовать метод кластеризации для определения кластеров для данных. | #* Использовать метод кластеризации для определения кластеров для данных. | ||
#* Идентифицировать и отметить центроиды каждого кластера. | #* Идентифицировать и отметить центроиды каждого кластера. | ||
#* Соотнести кластеры с экземплярами данных, находящимися на фиксированном расстоянии или на процентном удалении от центроиды соответствующего кластера. | #* Соотнести кластеры с экземплярами данных, находящимися на фиксированном расстоянии или на процентном удалении от центроиды соответствующего кластера. | ||
#* Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели. | #* Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели. | ||
− | # Проецирующие методы (англ. projections methods). Эти методы довольно быстро и просто определяют выбросы в выборке. | + | # Проецирующие методы (англ. ''projections methods''). Эти методы довольно быстро и просто определяют выбросы в выборке. |
− | #* Использовать один из проецирующих методов, например метод главных компонент (англ. principal component analysis, PCA) или самоорганизующиеся карты Кохонена(англ. self-organizing map, SOM) или проекцию Саммона(англ. Sammon mapping, Sammon projection), для суммирования обучающих данных в двух измерениях. | + | #* Использовать один из проецирующих методов, например метод главных компонент (англ. ''principal component analysis'', ''PCA'') или самоорганизующиеся карты Кохонена(англ. ''self-organizing map'', ''SOM'') или проекцию Саммона(англ. ''Sammon mapping'', ''Sammon projection''), для суммирования обучающих данных в двух измерениях. |
#* Визуализировать отображение | #* Визуализировать отображение | ||
− | #* Использовать критерий близости от проецируемых значений или от вектора таблицы кодирования (англ. codebook vector) для идентифицирования выбросов. | + | #* Использовать критерий близости от проецируемых значений или от вектора таблицы кодирования (англ. ''codebook vector'') для идентифицирования выбросов. |
#* Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели. | #* Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели. | ||
===Алгоритмы борьбы с выбросами=== | ===Алгоритмы борьбы с выбросами=== | ||
− | # Локально взвешенное сглаживание(англ. ''LOcally WEighted Scatter plot Smoothing, LOWESS'') | + | # Локально взвешенное сглаживание(англ. ''LOcally WEighted Scatter plot Smoothing'', ''LOWESS'') |
==См.также== | ==См.также== |
Версия 03:58, 29 ноября 2018
Выброс(англ. outliers) - такая часть во входных данных, которая сильно выделяется из общей выборки. Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений атрибутов во входных данных. Выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных.
Содержание
Причины возникновения выбросов
- Сбой работы оборудования
- Человеческий фактор
- Случайность
- Уникальные явления
- и др.
Методы обнаружения и борьбы с выбросами
Методы обнаружения выбросов
- Экстремальный анализ данных(англ. extreme value analysis). При таком анализе не применяются какие-либо специальные статистические методы. Обычно этот метод применим для одномерного случая. Алгоритм использования таков:
- Визуализировать данные, используя диаграммы, гистограммы и _, для нахождения экстремальных значений.
- Задействовать распределение, например Гауссовское, и найти значения, чье стандартное отклонение отличается в 2-3 раза от математического ожидания или в полтора раза от первой либо третьей квартилей.
- Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели.
- Апроксимирующий метод (англ. proximity method). Чуть более сложный метод, заключающийся в применении кластеризующих методов.
- Использовать метод кластеризации для определения кластеров для данных.
- Идентифицировать и отметить центроиды каждого кластера.
- Соотнести кластеры с экземплярами данных, находящимися на фиксированном расстоянии или на процентном удалении от центроиды соответствующего кластера.
- Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели.
- Проецирующие методы (англ. projections methods). Эти методы довольно быстро и просто определяют выбросы в выборке.
- Использовать один из проецирующих методов, например метод главных компонент (англ. principal component analysis, PCA) или самоорганизующиеся карты Кохонена(англ. self-organizing map, SOM) или проекцию Саммона(англ. Sammon mapping, Sammon projection), для суммирования обучающих данных в двух измерениях.
- Визуализировать отображение
- Использовать критерий близости от проецируемых значений или от вектора таблицы кодирования (англ. codebook vector) для идентифицирования выбросов.
- Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели.
Алгоритмы борьбы с выбросами
- Локально взвешенное сглаживание(англ. LOcally WEighted Scatter plot Smoothing, LOWESS)
См.также
Примечания
- https://machinelearningmastery.com/how-to-identify-outliers-in-your-data/
- https://ru.coursera.org/lecture/vvedenie-mashinnoe-obuchenie/obnaruzhieniie-vybrosov-t9PG4
- https://habr.com/post/338868/
- https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D1%8B%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82
- https://en.wikipedia.org/wiki/Sammon_mapping