Глубокое обучение — различия между версиями
(→Источники информации) |
|||
Строка 4: | Строка 4: | ||
== История == | == История == | ||
− | ... | + | Термин «глубокое обучение» появился в научном сообществе машинного обучения в 1986 году в работе израильско-американского ученой Рины Дехтер «Learning While Searching in Constraint-Satisfaction-Problems»<ref>[https://www.researchgate.net/publication/221605378_Learning_While_Searching_in_Constraint-Satisfaction-Problems Learning While Searching in Constraint-Satisfaction-Problems]</ref>. Стоит отметить, что первый общий рабочий алгоритм для глубоких многослойных перцептронов прямого распространения был опубликован в книге советских учёных Алексея Григорьевича Ивахненко и Валентина Григорьевича Лапы «Кибернетические предсказывающие устройства». |
+ | |||
+ | Многие архитектуры глубокого обучения появились с искусственной нейронной сети Neocognitron<ref>[https://en.wikipedia.org/wiki/Neocognitron Neocognitron, Wikipedia]</ref>, представленной в 1980м году Кунихикой Фукусимой. Особенное влияние данная сеть оказала на архитектуры, использующиеся для компьютерного зрения. В 1989 Ян ЛуКон применил к глубокой нейронной сети стандарный алгоритм обратного распространения с целью распознавания рукописных почтовых индексов по почте. Хотя алгоритм работал, на его обучение потребовалось 3 дня. | ||
+ | |||
+ | |||
+ | == Определение == | ||
+ | ... | ||
== Разделы == | == Разделы == |
Версия 20:27, 4 декабря 2018
Глубокое обучение (англ. deep learning) — совокупность широкого семейства методов машинного обучения, основанных на обучении представлениям, а не специализированным алгоритмам под конкретные задачи. Глубокое обучение может быть с учителем, с частичным привлечением учителя, без учителя и с подкреплением. Несмотря на то, что данный раздел машинного обучения появился еще в 1980х, до недавнего времени его применение было сильно ограничено из-за недостака вычислительных мощностей существовавших компьютеров. Ситуация изменилась только в середине 2000х.
На создание моделей глубокого обучения оказали влияние некоторые процессы и паттерны, происходящие в биологических нейронных системах. Несмотря на это, данные модели имеют множество различий от биологического мозга (и в структуре и в функциях), что делает невозможным использование теорем и доказательств, применяющихся нейробиологии.
Содержание
История
Термин «глубокое обучение» появился в научном сообществе машинного обучения в 1986 году в работе израильско-американского ученой Рины Дехтер «Learning While Searching in Constraint-Satisfaction-Problems»[1]. Стоит отметить, что первый общий рабочий алгоритм для глубоких многослойных перцептронов прямого распространения был опубликован в книге советских учёных Алексея Григорьевича Ивахненко и Валентина Григорьевича Лапы «Кибернетические предсказывающие устройства».
Многие архитектуры глубокого обучения появились с искусственной нейронной сети Neocognitron[2], представленной в 1980м году Кунихикой Фукусимой. Особенное влияние данная сеть оказала на архитектуры, использующиеся для компьютерного зрения. В 1989 Ян ЛуКон применил к глубокой нейронной сети стандарный алгоритм обратного распространения с целью распознавания рукописных почтовых индексов по почте. Хотя алгоритм работал, на его обучение потребовалось 3 дня.
Определение
...
Разделы
...
Задачи
...
Sigmoid function
...
Rectified Linear Units (ReLU)
...
См. также
...