Сверточные нейронные сети — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 2: Строка 2:
  
 
== Свертка ==
 
== Свертка ==
[[Файл:Convolution_example.png|upright=1.5|thumb|Пример свертки двух матриц размера 5x5 и 3x3]]
+
[[Файл:Convolution_example.png|upright=1.0|thumb|Пример свертки двух матриц размера 5x5 и 3x3]]
 
'''Свертка''' (англ. ''convolution'') {{---}} операция над парой матриц <math>A</math> (размера <math>n_x\times n_y</math>) и <math>B</math> (размера <math>m_x \times m_y</math>), результатом которой является матрица <math>C = A * B</math> размера <math>(n_x-m_x+1)\times (n_y-m_y+1)</math>.
 
'''Свертка''' (англ. ''convolution'') {{---}} операция над парой матриц <math>A</math> (размера <math>n_x\times n_y</math>) и <math>B</math> (размера <math>m_x \times m_y</math>), результатом которой является матрица <math>C = A * B</math> размера <math>(n_x-m_x+1)\times (n_y-m_y+1)</math>.
 
Каждый элемент результата вычисляется как скалярное произведение матрицы <math>B</math> и некоторой подматрицы <math>A</math> такого же размера (подматрица определяется положением элемента в результате).
 
Каждый элемент результата вычисляется как скалярное произведение матрицы <math>B</math> и некоторой подматрицы <math>A</math> такого же размера (подматрица определяется положением элемента в результате).
Строка 10: Строка 10:
  
 
== Структура сверточной нейронной сети ==
 
== Структура сверточной нейронной сети ==
В сверточной нейронной сети выходы промежуточных слоев образуют матрицу (изображение) или набор матриц (несколько слоёв изображения). Так, например, на вход сверточной нейронной сети можно подавать три слоя изображения (R-, G-, B-каналы изображения). Распространенными видами слоев в сверточной нейронной сети являются сверточные слои (англ. ''convolutional layer''), пулинговые слои (англ. ''pooling layer'') и [[:Нейронные сети, перцептрон|полносвязные слои]]<sup>[на 09.01.19 не создан]</sup> (англ. ''fully-connected layer'').
+
В сверточной нейронной сети выходы промежуточных слоев образуют матрицу (изображение) или набор матриц (несколько слоёв изображения). Так, например, на вход сверточной нейронной сети можно подавать три слоя изображения (R-, G-, B-каналы изображения). Основными видами слоев в сверточной нейронной сети являются сверточные слои (англ. ''convolutional layer''), пулинговые слои (англ. ''pooling layer'') и [[:Нейронные сети, перцептрон|полносвязные слои]]<sup>[на 09.01.19 не создан]</sup> (англ. ''fully-connected layer'').
  
 
=== Сверточный слой ===
 
=== Сверточный слой ===
[[Файл:Padding.png|upright=1.5|thumb|Пример свертки двух матриц с дополнением нулями и сдвигом 2]]
+
[[Файл:Padding.png|upright=1.0|thumb|Пример свертки двух матриц с дополнением нулями и сдвигом 2]]
Сверточный слой нейронной сети представляет из себя применение операции свертки к выходам с предыдущего слоя, где веса ядра свертки являются обучаемыми параметрами. Еще один обучаемый вес используется в качестве константного сдвига (англ. bias). При этом есть несколько важных деталей:
+
[[Файл:Convolution-operation-on-volume5.png|upright=1.0|thumb|Пример свертки с трехмерным ядром]]
 +
Сверточный слой нейронной сети представляет из себя применение операции свертки к выходам с предыдущего слоя, где веса ядра свертки являются обучаемыми параметрами. Еще один обучаемый вес используется в качестве константного сдвига (англ. ''bias''). При этом есть несколько важных деталей:
  
 
* В одном сверточном слое может быть несколько сверток. В этом случае для каждой свертки на выходе получится своё изображение. Например, если вход имел размерность <math>w\times h</math>, а в слое было <math>n</math> сверток с ядром размерности <math>k_x\times k_y</math>, то выход будет иметь размерность <math>n\times(w - k_x + 1)\times(h - k_y + 1)</math>.
 
* В одном сверточном слое может быть несколько сверток. В этом случае для каждой свертки на выходе получится своё изображение. Например, если вход имел размерность <math>w\times h</math>, а в слое было <math>n</math> сверток с ядром размерности <math>k_x\times k_y</math>, то выход будет иметь размерность <math>n\times(w - k_x + 1)\times(h - k_y + 1)</math>.
Строка 20: Строка 21:
 
* Ядра свертки могут быть трёхмерными. Свертка трехмерного входа с трехмерным ядром происходит аналогично, просто скалярное произведение считается еще и по всем слоям изображения. Например, для усреднения информации о цветах исходного изображения, на первом слое можно использовать свертку размерности <math>3\times w \times h</math>. На выходе такого слоя будет уже одно изображение (вместо трёх).
 
* Ядра свертки могут быть трёхмерными. Свертка трехмерного входа с трехмерным ядром происходит аналогично, просто скалярное произведение считается еще и по всем слоям изображения. Например, для усреднения информации о цветах исходного изображения, на первом слое можно использовать свертку размерности <math>3\times w \times h</math>. На выходе такого слоя будет уже одно изображение (вместо трёх).
  
* Можно заметить, что применение операции свертки уменьшает изображение. Также пиксели, которые находятся на границе изображения учавствуют в меньшем количестве сверток, чем внутренние. В связи с этим в сверточных слоях используется дополнение изображения (англ. padding). Выходы с предыдущего слоя дополняются пикселями так, чтобы после свертки сохранился размер изображения (распространенной практикой является дополнять изображение нулями (англ. zero padding), но возможны и другие подходы). Такие свертки называют ''одинаковыми'' (англ. same convolution), а свертки без дополнения изображения называются ''правильными'' (англ. valid convolution).
+
* Можно заметить, что применение операции свертки уменьшает изображение. Также пиксели, которые находятся на границе изображения учавствуют в меньшем количестве сверток, чем внутренние. В связи с этим в сверточных слоях используется дополнение изображения (англ. ''padding''). Выходы с предыдущего слоя дополняются пикселями так, чтобы после свертки сохранился размер изображения (распространенной практикой является дополнять изображение нулями (англ. ''zero padding''), но возможны и другие подходы). Такие свертки называют ''одинаковыми'' (англ. ''same convolution''), а свертки без дополнения изображения называются ''правильными'' (англ. ''valid convolution'').
  
* Еще одним параметром сверточного слоя является ''сдвиг'' (англ. stride). Хоть обычно свертка применяется подряд для каждого пикселя, иногда используется сдвиг, отличный от единицы {{---}} скалярное произведение считается не со всеми возможными положениями ядра, а только с положениями, кратными некоторому сдвигу <math>s</math>. Тогда, если если вход имел размерность <math>w\times h</math>, а ядро свертки имело размерность <math>k_x\times k_y</math> и использовался сдвиг <math>s</math>, то выход будет иметь размерность <math>\lfloor\frac{w - k_x}{s} + 1\rfloor\times\lfloor\frac{h - k_y}{s} + 1\rfloor</math>.
+
* Еще одним параметром сверточного слоя является ''сдвиг'' (англ. ''stride''). Хоть обычно свертка применяется подряд для каждого пикселя, иногда используется сдвиг, отличный от единицы {{---}} скалярное произведение считается не со всеми возможными положениями ядра, а только с положениями, кратными некоторому сдвигу <math>s</math>. Тогда, если если вход имел размерность <math>w\times h</math>, а ядро свертки имело размерность <math>k_x\times k_y</math> и использовался сдвиг <math>s</math>, то выход будет иметь размерность <math>\lfloor\frac{w - k_x}{s} + 1\rfloor\times\lfloor\frac{h - k_y}{s} + 1\rfloor</math>.
  
  
 
=== Пулинговый слой ===
 
=== Пулинговый слой ===
Пулинговый слой призван снижать размерность изображения. Исходное изображение делится на блоки размером <math>w\times h</math> и для каждого блока вычисляется некоторая функция (например, максимум в случае max pooling или (взвешенное) среднее в случае (weighted) average pooling). Обучаемых параметров у этого слоя нет, его основная цель {{---}} уменьшить изображение, чтобы последующие свертки оперировали над большей областью исходного изображения. Также он призван увеличить инвариантность выхода сети по отношению к малому переносу входа.
+
[[Файл:Maxpool.jpeg|upright=1.0|thumb|Пример операции пулинга с функцией максимума]]
 +
Пулинговый слой призван снижать размерность изображения. Исходное изображение делится на блоки размером <math>w\times h</math> и для каждого блока вычисляется некоторая функция. Чаще всего используется функция максимума (англ. ''max pooling'') или (взвешенного) среднего (англ. ''(weighted) average pooling''). Обучаемых параметров у этого слоя нет. Основные цели пулингового слоя:
 +
* уменьшение изображения, чтобы последующие свертки оперировали над большей областью исходного изображения;
 +
* увеличение инвариантности выхода сети по отношению к малому переносу входа;
 +
* ускорение вычислений.
 +
 
 +
== Известные архитектуры сверточных нейронных сетей ==
 +
=== LeNet-5 ===
 +
[[Файл:Lenet5.png|upright=1.0|thumb|Архитектура LeNet-5]]
 +
Нейронная сеть, предложенная Яном Лекуном, для распознавания рукописных цифр MNIST.
 +
 
 +
=== AlexNet ===
 +
[[Файл:Alexnet.png|upright=1.0|thumb|Архитектура AlexNet]]
 +
Победитель соревнования ImageNet 2012-ого года, набравший точность 84.6%. Была реализована с использованием CUDA для повышения производительности. Состоит из двух отдельных частей, которые слабо взаимодействуют друг с другом, что позволяет исполнять их параллельно на разных GPU с минимальным обменом данными.
 +
 
 +
=== VGG ===
 +
Семейство архитектур нейронных сетей, которое включает в себя, в частности, VGG-11, VGG-13, VGG-16 и VGG-19. Победитель соревнования ImageNet 2013-ого года (VGG-16), набравший точность 92.7%. Одной из отличительных особенностей является использование ядер свертки небольшого размера (3x3, в отличие от больших ядер размера 7x7 или 11x11).

Версия 14:57, 10 января 2019

Сверточная нейронная сеть (англ. convolutional neural network, CNN) — специальная архитектура нейронных сетей, предложенная Яном Лекуном, изначально нацеленная на эффективное распознавание изображений.

Свертка

Пример свертки двух матриц размера 5x5 и 3x3

Свертка (англ. convolution) — операция над парой матриц [math]A[/math] (размера [math]n_x\times n_y[/math]) и [math]B[/math] (размера [math]m_x \times m_y[/math]), результатом которой является матрица [math]C = A * B[/math] размера [math](n_x-m_x+1)\times (n_y-m_y+1)[/math]. Каждый элемент результата вычисляется как скалярное произведение матрицы [math]B[/math] и некоторой подматрицы [math]A[/math] такого же размера (подматрица определяется положением элемента в результате). То есть, [math]C_{i,j} = \sum_{u = 0}^{m_x-1}\sum_{v = 0}^{m_y - 1}A_{i+u,j+v}B_{u,v}[/math]. На изображении справа можно видеть, как матрица [math]B[/math] «двигается» по матрице [math]A[/math], и в каждом положении считается скалярное произведение матрицы [math]B[/math] и той части матрицы [math]A[/math], на которую она сейчас наложена. Получившееся число записывается в соответствующий элемент результата.

Логический смысл свертки такой — чем больше величина элемента свертки, тем больше эта часть матрицы [math]A[/math] была похожа на матрицу [math]B[/math] (похожа в смысле скалярного произведения). Поэтому матрицу [math]A[/math] называют изображением, а матрицу [math]B[/math]фильтром или образцом.

Структура сверточной нейронной сети

В сверточной нейронной сети выходы промежуточных слоев образуют матрицу (изображение) или набор матриц (несколько слоёв изображения). Так, например, на вход сверточной нейронной сети можно подавать три слоя изображения (R-, G-, B-каналы изображения). Основными видами слоев в сверточной нейронной сети являются сверточные слои (англ. convolutional layer), пулинговые слои (англ. pooling layer) и полносвязные слои[на 09.01.19 не создан] (англ. fully-connected layer).

Сверточный слой

Пример свертки двух матриц с дополнением нулями и сдвигом 2
Пример свертки с трехмерным ядром

Сверточный слой нейронной сети представляет из себя применение операции свертки к выходам с предыдущего слоя, где веса ядра свертки являются обучаемыми параметрами. Еще один обучаемый вес используется в качестве константного сдвига (англ. bias). При этом есть несколько важных деталей:

  • В одном сверточном слое может быть несколько сверток. В этом случае для каждой свертки на выходе получится своё изображение. Например, если вход имел размерность [math]w\times h[/math], а в слое было [math]n[/math] сверток с ядром размерности [math]k_x\times k_y[/math], то выход будет иметь размерность [math]n\times(w - k_x + 1)\times(h - k_y + 1)[/math].
  • Ядра свертки могут быть трёхмерными. Свертка трехмерного входа с трехмерным ядром происходит аналогично, просто скалярное произведение считается еще и по всем слоям изображения. Например, для усреднения информации о цветах исходного изображения, на первом слое можно использовать свертку размерности [math]3\times w \times h[/math]. На выходе такого слоя будет уже одно изображение (вместо трёх).
  • Можно заметить, что применение операции свертки уменьшает изображение. Также пиксели, которые находятся на границе изображения учавствуют в меньшем количестве сверток, чем внутренние. В связи с этим в сверточных слоях используется дополнение изображения (англ. padding). Выходы с предыдущего слоя дополняются пикселями так, чтобы после свертки сохранился размер изображения (распространенной практикой является дополнять изображение нулями (англ. zero padding), но возможны и другие подходы). Такие свертки называют одинаковыми (англ. same convolution), а свертки без дополнения изображения называются правильными (англ. valid convolution).
  • Еще одним параметром сверточного слоя является сдвиг (англ. stride). Хоть обычно свертка применяется подряд для каждого пикселя, иногда используется сдвиг, отличный от единицы — скалярное произведение считается не со всеми возможными положениями ядра, а только с положениями, кратными некоторому сдвигу [math]s[/math]. Тогда, если если вход имел размерность [math]w\times h[/math], а ядро свертки имело размерность [math]k_x\times k_y[/math] и использовался сдвиг [math]s[/math], то выход будет иметь размерность [math]\lfloor\frac{w - k_x}{s} + 1\rfloor\times\lfloor\frac{h - k_y}{s} + 1\rfloor[/math].


Пулинговый слой

Пример операции пулинга с функцией максимума

Пулинговый слой призван снижать размерность изображения. Исходное изображение делится на блоки размером [math]w\times h[/math] и для каждого блока вычисляется некоторая функция. Чаще всего используется функция максимума (англ. max pooling) или (взвешенного) среднего (англ. (weighted) average pooling). Обучаемых параметров у этого слоя нет. Основные цели пулингового слоя:

  • уменьшение изображения, чтобы последующие свертки оперировали над большей областью исходного изображения;
  • увеличение инвариантности выхода сети по отношению к малому переносу входа;
  • ускорение вычислений.

Известные архитектуры сверточных нейронных сетей

LeNet-5

Архитектура LeNet-5

Нейронная сеть, предложенная Яном Лекуном, для распознавания рукописных цифр MNIST.

AlexNet

Архитектура AlexNet

Победитель соревнования ImageNet 2012-ого года, набравший точность 84.6%. Была реализована с использованием CUDA для повышения производительности. Состоит из двух отдельных частей, которые слабо взаимодействуют друг с другом, что позволяет исполнять их параллельно на разных GPU с минимальным обменом данными.

VGG

Семейство архитектур нейронных сетей, которое включает в себя, в частности, VGG-11, VGG-13, VGG-16 и VGG-19. Победитель соревнования ImageNet 2013-ого года (VGG-16), набравший точность 92.7%. Одной из отличительных особенностей является использование ядер свертки небольшого размера (3x3, в отличие от больших ядер размера 7x7 или 11x11).