Выброс — различия между версиями
Fest (обсуждение | вклад) м  | 
				Fest (обсуждение | вклад)   | 
				||
| Строка 1: | Строка 1: | ||
| − | '''Выброс'''(англ. ''  | + | '''Выброс'''(англ. ''outlier'') — небольшая доля объектов во входных данных, которая сильно выделяется из общей выборки. Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений атрибутов во входных данных. Соответственно выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, к снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных.  | 
===Причины возникновения выбросов===  | ===Причины возникновения выбросов===  | ||
* Сбой работы оборудования  | * Сбой работы оборудования  | ||
| Строка 6: | Строка 6: | ||
* Уникальные явления  | * Уникальные явления  | ||
* и др.  | * и др.  | ||
| − | + | ==Примеры==  | |
| + | {|align="center"  | ||
| + |  |-valign="top"  | ||
| + |  |[[Файл:Outlier_norm.png|200px|thumb|Рис 1. Хорошо обученная модель с выбросами]]  | ||
| + |  |[[Файл:Outlier_bad.png|200px|thumb|Рис 2. Переобученная модель на выбросах]]  | ||
| + |  |}  | ||
| + | Рис 1 показывает хорошо обученную модель, в которой присутствуют два выброса. Как видно из рисунка данная модель показала себя устойчивой к выбросам, либо же вовремя прекратила своё обучение. Обратная ситуация обстоит с Рис 2, где модель сильно переобучилась из-за присутствующих в ней выбросов.   | ||
==Методы обнаружения и борьбы с выбросами==    | ==Методы обнаружения и борьбы с выбросами==    | ||
===Методы обнаружения выбросов===  | ===Методы обнаружения выбросов===  | ||
# Экстремальный анализ данных(англ. ''extreme value analysis''). При таком анализе не применяются какие-либо специальные статистические методы. Обычно этот метод применим для одномерного случая. Алгоритм использования таков:  | # Экстремальный анализ данных(англ. ''extreme value analysis''). При таком анализе не применяются какие-либо специальные статистические методы. Обычно этот метод применим для одномерного случая. Алгоритм использования таков:  | ||
| − | #* Визуализировать данные, используя диаграммы  | + | #* Визуализировать данные, используя диаграммы и гистограммы для нахождения экстремальных значений.    | 
#* Задействовать распределение, например Гауссовское, и найти значения, чье стандартное отклонение отличается в 2-3 раза от математического ожидания или в полтора раза от первой либо третьей квартилей.    | #* Задействовать распределение, например Гауссовское, и найти значения, чье стандартное отклонение отличается в 2-3 раза от математического ожидания или в полтора раза от первой либо третьей квартилей.    | ||
#* Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели.  | #* Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели.  | ||
| Строка 38: | Строка 44: | ||
  7: пока коэффиценты <math>\gamma_i</math> не стабилизируются;  |   7: пока коэффиценты <math>\gamma_i</math> не стабилизируются;  | ||
Пример. Допустим мы пытаемся восстановить зависимость, используя ''формулу Надарая-Ватсона''<ref>http://www.machinelearning.ru/wiki/index.php?title=%D0%9E%D1%86%D0%B5%D0%BD%D0%BA%D0%B0_%D0%9D%D0%B0%D0%B4%D0%B0%D1%80%D0%B0%D1%8F-%D0%92%D0%B0%D1%82%D1%81%D0%BE%D0%BD%D0%B0</ref> по некоторым данным из n наблюдений, 2 из которых имеют излишне высокое и излишне низкое значения соответственно. Большие ошибки, вызванные этими выбросами, довольно заметно исказят полученный результат по формуле. В методе локально взвешенного сглаживания мы домножаем веса объектов <math>w_i</math> на коэффиценты <math>\gamma_i=\widetilde{K}\left(\varepsilon_i\right)</math>, значения которых тем меньше, чем величина ошибки <math>\varepsilon_i</math>. Для этого мы возьмём квартическое ядро (не обязательно совпадающее с основным ядром) <math>\widetilde{K}\left(\varepsilon\right)=K_Q\left(\frac{\varepsilon}{6Me\left\{\varepsilon_i\right\}}\right)</math>, где <math>Me\left \{\varepsilon_i\right \}</math> — медиана множества значений <math>\varepsilon_i</math>.    | Пример. Допустим мы пытаемся восстановить зависимость, используя ''формулу Надарая-Ватсона''<ref>http://www.machinelearning.ru/wiki/index.php?title=%D0%9E%D1%86%D0%B5%D0%BD%D0%BA%D0%B0_%D0%9D%D0%B0%D0%B4%D0%B0%D1%80%D0%B0%D1%8F-%D0%92%D0%B0%D1%82%D1%81%D0%BE%D0%BD%D0%B0</ref> по некоторым данным из n наблюдений, 2 из которых имеют излишне высокое и излишне низкое значения соответственно. Большие ошибки, вызванные этими выбросами, довольно заметно исказят полученный результат по формуле. В методе локально взвешенного сглаживания мы домножаем веса объектов <math>w_i</math> на коэффиценты <math>\gamma_i=\widetilde{K}\left(\varepsilon_i\right)</math>, значения которых тем меньше, чем величина ошибки <math>\varepsilon_i</math>. Для этого мы возьмём квартическое ядро (не обязательно совпадающее с основным ядром) <math>\widetilde{K}\left(\varepsilon\right)=K_Q\left(\frac{\varepsilon}{6Me\left\{\varepsilon_i\right\}}\right)</math>, где <math>Me\left \{\varepsilon_i\right \}</math> — медиана множества значений <math>\varepsilon_i</math>.    | ||
| − | Таким образом выбросы будут нивелироваться автоматически при использовании данного подхода. В статистике методы, устойчивые к нарушениям модельных предположений о данных, называются ''робастными''. Метод локально взвешенного сглаживания относится к ''робастным'' методам, так как он устойчив к наличию небольшого количества выбросов.   | + | Таким образом выбросы будут нивелироваться автоматически при использовании данного подхода. В статистике методы, устойчивые к нарушениям модельных предположений о данных, называются ''робастными''. Метод локально взвешенного сглаживания относится к ''робастным'' методам, так как он устойчив к наличию небольшого количества выбросов.    | 
| + | * Дерево принятия решения (англ. ''decision tree''<ref>https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B9</ref>). Это дерево, как и уже описанный алгоритм локально взвешенного сглаживания, относится ''робастным'' методам.  | ||
==См.также==  | ==См.также==  | ||
Версия 06:57, 18 января 2019
Выброс(англ. outlier) — небольшая доля объектов во входных данных, которая сильно выделяется из общей выборки. Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений атрибутов во входных данных. Соответственно выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, к снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных.
Содержание
Причины возникновения выбросов
- Сбой работы оборудования
 - Человеческий фактор
 - Случайность
 - Уникальные явления
 - и др.
 
Примеры
Рис 1 показывает хорошо обученную модель, в которой присутствуют два выброса. Как видно из рисунка данная модель показала себя устойчивой к выбросам, либо же вовремя прекратила своё обучение. Обратная ситуация обстоит с Рис 2, где модель сильно переобучилась из-за присутствующих в ней выбросов.
Методы обнаружения и борьбы с выбросами
Методы обнаружения выбросов
-  Экстремальный анализ данных(англ. extreme value analysis). При таком анализе не применяются какие-либо специальные статистические методы. Обычно этот метод применим для одномерного случая. Алгоритм использования таков:
- Визуализировать данные, используя диаграммы и гистограммы для нахождения экстремальных значений.
 - Задействовать распределение, например Гауссовское, и найти значения, чье стандартное отклонение отличается в 2-3 раза от математического ожидания или в полтора раза от первой либо третьей квартилей.
 - Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели.
 
 -  Апроксимирующий метод (англ. proximity method). Чуть более сложный метод, заключающийся в применении кластеризующих методов.
- Использовать метод кластеризации для определения кластеров для данных.
 - Идентифицировать и отметить центроиды каждого кластера.
 - Соотнести кластеры с экземплярами данных, находящимися на фиксированном расстоянии или на процентном удалении от центроиды соответствующего кластера.
 - Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели.
 
 -  Проецирующие методы (англ. projections methods). Эти методы довольно быстро и просто определяют выбросы в выборке. 
- Использовать один из проецирующих методов, например метод главных компонент (англ. principal component analysis, PCA[1]) или самоорганизующиеся карты Кохонена(англ. self-organizing map, SOM[2]) или проекцию Саммона(англ. Sammon mapping, Sammon projection[3]), для суммирования обучающих данных в двух измерениях.
 - Визуализировать отображение
 - Использовать критерий близости от проецируемых значений или от вектора таблицы кодирования (англ. codebook vector) для идентифицирования выбросов.
 - Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели.
 
 
Алгоритмы борьбы с выбросами
- Локально взвешенное сглаживание(англ. LOcally WEighted Scatter plot Smoothing, LOWESS)[4].
 
ВХОД: (-) обучающая выборка; ВЫХОД: коэффиценты ; ________________________________________________________ 1: инициализация: ; 2: повторять 3: для всех объектов ; 4: вычислить оценки скользящего контроля: 5: для всех объектов ; 6: 7: пока коэффиценты не стабилизируются;
Пример. Допустим мы пытаемся восстановить зависимость, используя формулу Надарая-Ватсона[5] по некоторым данным из n наблюдений, 2 из которых имеют излишне высокое и излишне низкое значения соответственно. Большие ошибки, вызванные этими выбросами, довольно заметно исказят полученный результат по формуле. В методе локально взвешенного сглаживания мы домножаем веса объектов на коэффиценты , значения которых тем меньше, чем величина ошибки . Для этого мы возьмём квартическое ядро (не обязательно совпадающее с основным ядром) , где — медиана множества значений . Таким образом выбросы будут нивелироваться автоматически при использовании данного подхода. В статистике методы, устойчивые к нарушениям модельных предположений о данных, называются робастными. Метод локально взвешенного сглаживания относится к робастным методам, так как он устойчив к наличию небольшого количества выбросов.
- Дерево принятия решения (англ. decision tree[6]). Это дерево, как и уже описанный алгоритм локально взвешенного сглаживания, относится робастным методам.
 
См.также
Примечания
- ↑ https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D1%8B%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82
 - ↑ https://habr.com/post/338868/
 - ↑ https://en.wikipedia.org/wiki/Sammon_mapping
 - ↑ http://www.aliquote.org/cours/2012_biomed/biblio/Cleveland1979.pdf
 - ↑ http://www.machinelearning.ru/wiki/index.php?title=%D0%9E%D1%86%D0%B5%D0%BD%D0%BA%D0%B0_%D0%9D%D0%B0%D0%B4%D0%B0%D1%80%D0%B0%D1%8F-%D0%92%D0%B0%D1%82%D1%81%D0%BE%D0%BD%D0%B0
 - ↑ https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B9