Вещественные числа — различия между версиями
м (даешь моделей!) |
Komarov (обсуждение | вклад) (→Модуль: список стал няшней ^_^) |
||
| Строка 31: | Строка 31: | ||
Свойства модуля: | Свойства модуля: | ||
| − | <tex> | + | #<tex>|ab| = |a||b|</tex> |
| − | + | #<tex>|x + y| \le |x| + |y|</tex> | |
| − | + | #<tex>|x - a| \le r \Leftrightarrow a - r \le x \le a + r</tex> | |
| − | |||
| − | </tex> | ||
=== Аксиома Архимеда === | === Аксиома Архимеда === | ||
Версия 21:05, 15 января 2011
Содержание
Натуральные числа
Множество натуральных чисел определяется следующим образом:
За числом в натуральном ряде непосредственно следует , между и других нет.
Гильберт:
Натуральные числа — первичные элементы, природа которых не обсуждается, все остальное базируется на этом.
Целые числа
Множество целых чисел . Также
Рациональные числа
Множество рациональных чисел
Множество рациональных чисел упорядочено, то есть всегда выполняется только один из трех случаев: или
Модуль
| Определение: |
| — модуль или абсолютная величина числа x |
Свойства модуля:
Аксиома Архимеда
В множестве выполняется аксиома Архимеда:
Дополнение множества рациональных чисел
Пусть — два числовых множества.
| Определение: |
| Запись означает, что . |
Аналогично определяются записи типа , и т. д. и т. п.
Если , то запись означает, что .
Неполнота числовой оси
| Утверждение: |
Пусть
Тогда |
|
Допустим, что такое существует и . Тогда возможны три случая: Случай невозможен. Докажем это. Предположим, что , Значит число можно представить в виде несократимой дроби . Тогда: 2 - простое, значит делится на , противоречие. Возможны два случая: либо , либо . Рассмотрим первый из них, второй доказывается аналогичным образом 1) Для всех рациональных
Заметим, что если , то ; Для такого По предположению, , противоречие. |
Этим утверждением обнаруживается серьезный пробел во множестве рациональных чисел. Для его ликвидации вводятся некоторые объекты. При таком пополнении должны выполняться:
- 4 арифметических действия с сохранением законов арифметики.
- Сохранение упорядоченности.
- Выполнение аксиомы непрерывности:
Пусть и — 2 произвольных подмножества из пополненного множества рациональных чисел, и , то в пополненном множестве
Получим множество, называемое множеством вещественных чисел — .
Из разбора ясно, что мы стоим на аксиоматических позициях.
Для анализа важно то, что для выполняется аксиома непрерывности.
Существует несколько моделей построения :
- Модель Дедекинда
- Модель Вейерштрасса
- Модель Кантора
Базируясь на аксиоме Архимеда и непрерывности, можно установить, что всюду плотно на :
В любом вещественном интервале найдется рациональное число.
Для нас этот факт важен тем, что он гарантирует единственность пополнения для выполнения аксиомы непрерывности.
Любое такое пополнение, независимо от модели, приводит к множествам, изоморфным друг другу.