Алгоритм двух китайцев — различия между версиями
Строка 1: | Строка 1: | ||
+ | == Постановка задачи == | ||
+ | |||
+ | Дан взвешенный ориентированный граф <tex>G</tex> и начальная вершина <tex>v</tex>. Требуется построить корневое остовное дерево в <tex>G</tex> с корнем в вершине <tex>v</tex> минимального веса. | ||
+ | |||
== Алгоритм == | == Алгоритм == | ||
− | |||
Пусть <tex>G_0 = (V_0, E_0)</tex> - исходный граф. Если хотя бы одна вершина графа <tex>G_0</tex> недостижима из <tex>v</tex>, то требуемое дерево построить нельзя. Теперь для каждой вершины <tex>u</tex> графа <tex>G_0</tex> произведём следующую операцию: найдём ребро минимального веса, входящее в <tex>u</tex> и вычтем его вес из весов всех остальных рёбер, входящих в <tex>u</tex>. | Пусть <tex>G_0 = (V_0, E_0)</tex> - исходный граф. Если хотя бы одна вершина графа <tex>G_0</tex> недостижима из <tex>v</tex>, то требуемое дерево построить нельзя. Теперь для каждой вершины <tex>u</tex> графа <tex>G_0</tex> произведём следующую операцию: найдём ребро минимального веса, входящее в <tex>u</tex> и вычтем его вес из весов всех остальных рёбер, входящих в <tex>u</tex>. | ||
Строка 7: | Строка 10: | ||
== Сложность == | == Сложность == | ||
− | Всего будет построено не более <tex>|V|</tex> конденсаций. Конденсацию можно построить за <tex>O(|E|)</tex>. Значит алгоритм можно реализовать за <tex>O(|V| | + | Всего будет построено не более <tex>|V|</tex> конденсаций. Конденсацию можно построить за <tex>O(|E|)</tex>. Значит алгоритм можно реализовать за <tex>O(|V||E|)</tex>. |
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Остовные деревья ]] | [[Категория: Остовные деревья ]] |
Версия 21:45, 15 января 2011
Постановка задачи
Дан взвешенный ориентированный граф
и начальная вершина . Требуется построить корневое остовное дерево в с корнем в вершине минимального веса.Алгоритм
Пусть
Пусть - искомое дерево в с весовой функцией . , т.е. - MST в с весовой функцией тогда и только тогда, когда - MST в с весовой функцией .
Рассмотрим граф , где - множество рёбер нулевого веса графа c весовой функцией .
Понятно, что если в этом графе найдётся остовное дерево с корнем в , то оно и будет искомым. Пусть теперь такого дерева нет.
Пусть есть некоторый путь от вершины до некоторой вершины в графе с весовой функцией . Тогда мы можем добавить к нашему дереву все вершины из компоненты сильной связности графа , которой принадлежит вершина (по нулевым путям из ). При этом вес нашего дерева не изменится.
Теперь построим граф - конденсацию графа . Пусть и - две вершины графа , отвечающие компонентам сильной связности и графа соответственно. Положим вес ребра между вершинами и равным минимальному среди весов рёбер графа с весовой функцией , идущих из в .
В графе содержится меньше вершин, чем в графе . Иначе, если бы в было бы столько же вершин, сколько в , то в все компоненты сильной связности состояли бы из единственной вершины. Значит в с весовой функцией не было бы нулевых циклов. То есть мы смогли бы построить в остовное дерево с корнем в , что противоречит нашему предположению.
Предположим теперь, что в уже построено MST . Построим теперь MST в с весовой функцией . Добавим к все вершины компоненты сильной связности графа , которой принадлежит (по нулевым путям из ). Пусть в есть ребро , отвечает компоненте сильной связности , а - компоненте сильной связности графа . Между и в графе с весовой функцией есть ребро , вес которого равен весу ребра . Добавим это ребро к дереву . Добавим к все вершины компоненты по нулевым путям из . Сделаем так для каждого ребра дерева и получим дерево - MST в графе .
Сложность
Всего будет построено не более
конденсаций. Конденсацию можно построить за . Значит алгоритм можно реализовать за .