Вариации регрессии — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Логическая регрессия)
(Гребневая регрессия (ридж-регрессия))
Строка 10: Строка 10:
 
'''Логистическая регрессия''' (англ. ''Logistic regression'') {{---}} разновидность регрессии для моделирования зависимости между зависимой и независимой переменными в случае, когда зависимая переменная <tex>y</tex> принимает значения в диапазоне от <tex>0</tex> до <tex>1</tex>.
 
'''Логистическая регрессия''' (англ. ''Logistic regression'') {{---}} разновидность регрессии для моделирования зависимости между зависимой и независимой переменными в случае, когда зависимая переменная <tex>y</tex> принимает значения в диапазоне от <tex>0</tex> до <tex>1</tex>.
  
===Гребневая регрессия (ридж-регрессия)===
+
==Гребневая регрессия (ридж-регрессия)==
====Описание====
+
'''Гребневая регрессия или ридж-регрессия''' (англ. ''ridge regression'') {{---}} один из методов [[Уменьшение размерности|понижения размерности]]. Применяется для борьбы с избыточностью данных, когда независимые переменные коррелируют друг с другом, вследствие чего проявляется неустойчивость оценок коэффициентов многомерной линейной регрессии.
====Пример кода для Scikit-learn====
+
 
 +
===Мотивация===
 +
'''Мультиколлинеарность''' ''(англ. multicollinearity)'' {{---}} наличие линейной зависимости между независимыми переменными регрессионной модели. Различают ''полную коллинеарность'' и ''частичную'' или просто ''мультиколлинеарность'' {{---}} наличие сильной корреляции между факторами.
 +
 
 +
Рассмотрим пример линейной модели: <tex>y = b_1 x_1 + b_2 x_2 + b_3 x_3 + \varepsilon</tex>.
 +
Пусть имеет место зависимость <tex>x_1 = x_2 + x_ 3</tex>. Добавим к первому коэффициенту произвольное число <tex>a</tex>, а из двух других коэффициентов это же число вычтем.
 +
Получаем (без случайной ошибки):
 +
 
 +
<tex>y = (b_1 + a)x_1 + (b_2 - a)x_2 + (b_3 - a)x_3 = b_1 x_1 + b_2 x_2 + b_3 x_3 + a(x_1 - x_2 - x_3) = b_1 x_1 + b_2 x_2 + b_3 x_3</tex>
 +
 
 +
Несмотря на относительно произвольное изменение коэффициентов модели мы получили исходную модель, то есть такая модель неидентифицируема.
 +
 
 +
На практике чаще встречается проблема сильной корреляции между независимыми переменными. В этом случае оценки параметров модели получить можно, но они будут неустойчивыми.
 +
 
 +
===Идея===
 +
Напомним решение для многомерной линейной регрессии:
 +
<tex>\alpha* = (F^T F)^{-1} F^T y = F^+ y</tex>
 +
 
 +
 
 +
===Пример кода для Scikit-learn===
  
 
===Лассо-регрессия===
 
===Лассо-регрессия===

Версия 19:49, 23 января 2019

Регрессия (англ. Regression) — метод моделирования зависимости между зависимой переменной [math]y[/math] и одной или несколькими независимыми переменными [math]x_1, x_2, \dots x_n[/math]. В случае нескольких независимых переменных регрессия называется множественной (англ. multivariate regression). Цель регрессионного анализа состоит в том, чтобы оценить значение непрерывной выходной переменной по значениям входных переменных.

Линейная регрессия

Основная статья: Линейная регрессия

Линейная регрессия (англ. Linear regression) — разновидность регрессии для моделирования линейной зависимости между зависимой и независимой переменными.

Логистическая регрессия

Основная статья: Логистическая регрессия

Логистическая регрессия (англ. Logistic regression) — разновидность регрессии для моделирования зависимости между зависимой и независимой переменными в случае, когда зависимая переменная [math]y[/math] принимает значения в диапазоне от [math]0[/math] до [math]1[/math].

Гребневая регрессия (ридж-регрессия)

Гребневая регрессия или ридж-регрессия (англ. ridge regression) — один из методов понижения размерности. Применяется для борьбы с избыточностью данных, когда независимые переменные коррелируют друг с другом, вследствие чего проявляется неустойчивость оценок коэффициентов многомерной линейной регрессии.

Мотивация

Мультиколлинеарность (англ. multicollinearity) — наличие линейной зависимости между независимыми переменными регрессионной модели. Различают полную коллинеарность и частичную или просто мультиколлинеарность — наличие сильной корреляции между факторами.

Рассмотрим пример линейной модели: [math]y = b_1 x_1 + b_2 x_2 + b_3 x_3 + \varepsilon[/math]. Пусть имеет место зависимость [math]x_1 = x_2 + x_ 3[/math]. Добавим к первому коэффициенту произвольное число [math]a[/math], а из двух других коэффициентов это же число вычтем. Получаем (без случайной ошибки):

[math]y = (b_1 + a)x_1 + (b_2 - a)x_2 + (b_3 - a)x_3 = b_1 x_1 + b_2 x_2 + b_3 x_3 + a(x_1 - x_2 - x_3) = b_1 x_1 + b_2 x_2 + b_3 x_3[/math]

Несмотря на относительно произвольное изменение коэффициентов модели мы получили исходную модель, то есть такая модель неидентифицируема.

На практике чаще встречается проблема сильной корреляции между независимыми переменными. В этом случае оценки параметров модели получить можно, но они будут неустойчивыми.

Идея

Напомним решение для многомерной линейной регрессии: [math]\alpha* = (F^T F)^{-1} F^T y = F^+ y[/math]


Пример кода для Scikit-learn

Лассо-регрессия

Описание

Пример кода для Scikit-learn

Байесовская

Логическая регрессия

Другие виды регрессии

Экологическая регрессия

LAD-регрессия

Джекнайф-регрессия

См. также

Источники информации

  1. machinelearning.ru — Линейная регрессия (пример)
  2. Словарь статистических терминов