Вариационный автокодировщик — различия между версиями
Строка 1: | Строка 1: | ||
− | '''Вариационный автокодировщик''' (англ. ''Variational Autoencoder'', ''VAE'') {{---}} это [[автокодировщик]] (a.k.a. генеративная модель, которая учится отображать объекты в заданное скрытое пространство (и обратно)) основанный на вариационном выводе. | + | '''Вариационный автокодировщик''' (англ. ''Variational Autoencoder'', ''VAE'') {{---}} это [[автокодировщик]]<sup>[на 27.01.19 не создан]</sup> (a.k.a. генеративная модель, которая учится отображать объекты в заданное скрытое пространство (и обратно)) основанный на вариационном выводе. |
Строка 8: | Строка 8: | ||
== Описание == | == Описание == | ||
− | ''' | + | '''Порождающее моделирование''' (англ. ''Generative modelling'') {{---}} область машинного обучения, имеющая дело с распределением <math>P(X)</math>, определенном на датасете <math>X</math> из пространства (возможно многомерного) <math>\Chi</math>. Так, например, популярные задачи генерации картинок имеют дело с огромным количеством измерений (пикселей). |
− | Также как и в обыкновенных кодировщиках у нас имеется скрытое вероятностное пространство Z соответствующее случайной величине (z, P(z))(распределенной как-нибудь фиксированно, здесь ~N(0, 1)). И мы хотим иметь декодер <math>f(z, \theta) \colon Z \times \Theta \to \Chi </math>. При этом мы хотим найти такие <math>\theta</math>, чтобы после разыгрывания | + | Также как и в обыкновенных кодировщиках у нас имеется скрытое вероятностное пространство <math>Z</math> соответствующее случайной величине <math>(z, P(z))</math> (распределенной как-нибудь фиксированно, здесь <math>~N(0, 1)</math>). И мы хотим иметь декодер <math>f(z, \theta) \colon Z \times \Theta \to \Chi </math>. При этом мы хотим найти такие <math>\theta</math>, чтобы после разыгрывания <math>z</math> по <math>P(z)</math> мы получили "что-то похожее" на элементы <math>X</math>. |
− | |||
− | <math> | + | Вообще, мы хотим, чтобы для любого <math>x \in X</math> мы хотим считать <math>P(x) = \int P(x|z; \theta)P(z)dz</math> здесь мы заменили <math>f(x, \theta)</math> на <math>P(x|z; \theta)</math>, чтобы явно сделать зависимость между <math>x</math> и <math>z</math> и после этого применить формулу полной вероятности. Обычно <math>P(x|z; \theta)</math> около нуля почти для всех пар <math>(x, z)</math>. Основная идея в том, что мы хотим теперь генерировать <math>z</math>, который бы давали что-то около x и только их суммировать в <math>P(x)</math>. Для этого нам требуется ввести еще одно распределение <math>Q(z|X)</math>, которое будет получать x и говорить распределение на <math>z</math> которое наиболее вероятно будет генерировать нам такой <math>x</math>. Теперь нам нужно как-то сделать похожими распределения <math>E_{z~Q}P(X|z)</math> и <math>P(X)</math>. |
− | + | Рассмотрим следующую дивергенцию Кульбака-Лейблера. | |
+ | :<math>D[Q(z)||P(z|X)] = E_{z∼Q} [log Q(z|X) − log P(z|X)]</math> | ||
− | <math>D[Q(z)||P(z|X)] = E_{z∼Q} [log Q(z) − log P(X|z) - log P(z)] + log P(X)</math> | + | Распишем <math>P(z|X)</math> как <math>P(X|z) * P(z) / P(X)</math>. |
+ | :<math>D[Q(z)||P(z|X)] = E_{z∼Q} [log Q(z) − log P(X|z) - log P(z)] + log P(X)</math> | ||
Что эквивалентно: | Что эквивалентно: | ||
− | <math>logP(x) - D[Q(z)||P(z|X)] = E_{z∼Q}[log P(X|z)] - D[Q(z)||P(z)]</math> | + | :<math>logP(x) - D[Q(z)||P(z|X)] = E_{z∼Q}[log P(X|z)] - D[Q(z)||P(z)]</math> |
− | Рассмотрим эту штуку для Q(z|X), тогда: | + | Рассмотрим эту штуку для <math>Q(z|X)</math>, тогда: |
− | <math>logP(x) - D[Q(z|X)||P(z|X)] = E_{z∼Q}[log P(X|z)] - D[Q(z|X)||P(z)]</math> | + | :<math>logP(x) - D[Q(z|X)||P(z|X)] = E_{z∼Q}[log P(X|z)] - D[Q(z|X)||P(z)]</math> |
Посмотрим, на это равенство. Правую часть мы можем оптимизировать градиентным спуском (пусть пока и не совсем понятно как). | Посмотрим, на это равенство. Правую часть мы можем оптимизировать градиентным спуском (пусть пока и не совсем понятно как). | ||
− | В левой же части первое слагаемое -- то, что мы хотим максимизировать. В то же время <math>D [Q(z|X)||P(z|X)]</math> мы хотим минимизировать. Если у нас Q(z|X) -- достаточно сильная модель, то в какой-то модель она будет хорошо матчить P(z|X), а значит их дивергенция Кульбака Лейблера будет почти 0. А значит на это слагаемое можно забить. И стараться максимизировать правую часть. В качестве бонуса мы еще получили более "поддатливую" P(z|X), вместо нее можно смотреть на Q(z|X). | + | В левой же части первое слагаемое -- то, что мы хотим максимизировать. В то же время <math>D[Q(z|X)||P(z|X)]</math> мы хотим минимизировать. Если у нас <math>Q(z|X)</math> -- достаточно сильная модель, то в какой-то модель она будет хорошо матчить <math>P(z|X)</math>, а значит их дивергенция Кульбака-Лейблера будет почти 0. А значит на это слагаемое можно забить. И стараться максимизировать правую часть. В качестве бонуса мы еще получили более "поддатливую" <math>P(z|X)</math>, вместо нее можно смотреть на <math>Q(z|X)</math>. |
− | Теперь разберемся как оптимизировать правую часть. Сначала нужно определиться с <math>Q(z|X)</math> | + | Теперь разберемся как оптимизировать правую часть. Сначала нужно определиться с моделью для <math>Q(z|X)</math>. Обычно ее берут равной <math>N(z|\mu(X, \theta), \sigma(X, \theta))</math>. Где <math>\mu</math> и <math>\sigma</math> какие-то детерминированные функции на X с обучаемыми параметрами <math>\theta</math>, которые мы впредь будем опускать). Ага, нейронки. |
− | Нетрудно проверить, что для двух нормальных распределений | + | Нетрудно проверить, что для дивергенция Кульбака-Лейблера двух нормальных распределений имеет следующий вид. |
+ | :<math>D_{K}[N(\mu_1, \Sigma_0)||N(\mu_1, \Sigma_0)]</math>, KLD есть <math>\frac{1}{2} (tr(\Sigma_1^{-1}\Sigma_0) + (\mu_1 - \mu_0)^T\Sigma_1^{-1}(\mu_1 - \mu_0) - k + log(\frac{det\Sigma_1}{det\Sigma_0})) </math>. | ||
− | Это значит, что <math>D[Q(z|X)||P(z)] = D[N(\mu(X), \Sigma(X))||N(0, I)] = \frac12 (tr(\Sigma(X)) + \mu(X)^T\mu(X) - k - log(det\Sigma(X)))</math>. Теперь здесь можно считать градиенты, для | + | Это значит, что |
+ | :<math>D[Q(z|X)||P(z)] = D[N(\mu(X), \Sigma(X))||N(0, I)] = \frac12 (tr(\Sigma(X)) + \mu(X)^T\mu(X) - k - log(det\Sigma(X)))</math>. | ||
+ | Теперь здесь | ||
+ | можно считать градиенты, для BackPropagation. С первым слагаемым в правой части все немного сложнее. <math>E_{z∼Q}[log P(X|z)]</math> мы можем считать методом Монте-Карло(МК), но тогда такая штука (из-за того, что переменные спрятаны в распределении, из которого мы генерируем себе выборку, для МК) не является гладкой относительно них, а значит непонятно, как проталкивать через это градиент. Для того, чтобы все-таки можно было протолкнуть градиент, применяется так называемый reparametrization trick, который базируется на простой формуле <math>N(\Sigma(X), \mu(X)) = \mu(X) + \Sigma^{\frac12}(X) * N(0, I) </math>. | ||
− | Следующая картинка лучше поможет осознать структуру VAE и, в частности, зачем нужен (и как работает) reparametrization trick. | + | :<math>E_{z∼Q}[log P(X|z)] = E_{\epsilon~N(0, I)}[log P(X = f(\mu(X) + \Sigma^{\frac12}(X) * \epsilon), \theta)]</math>. |
+ | В такой форме мы уже можем использовать BackPropagation для переменных из функций <math>\Sigma</math> и <math>\mu</math>. | ||
+ | |||
+ | Следующая картинка лучше поможет осознать структуру VAE и, в частности, зачем нужен (и как работает) reparametrization trick. | ||
+ | |||
+ | На левой части диаграмма без использования reparameterization trick. | ||
+ | На правой части диаграмма с использованием reparameterization trick. | ||
+ | |||
+ | [[Файл:VAE.PNG]] | ||
+ | |||
+ | взято из https://arxiv.org/pdf/1606.05908.pdf | ||
== Пример реализации == | == Пример реализации == | ||
Строка 90: | Строка 105: | ||
* Каскадное обучение глубоких сетей (хотя сейчас применяется все реже, в связи с появлением новых методов инициализации весов) | * Каскадное обучение глубоких сетей (хотя сейчас применяется все реже, в связи с появлением новых методов инициализации весов) | ||
* Уменьшение шума в данных | * Уменьшение шума в данных | ||
− | * Уменьшение размерности данных (иногда работает лучше, чем [[метод главных компонент]]) | + | * Уменьшение размерности данных (иногда работает лучше, чем [[метод главных компонент]]<sup>[на 27.01.19 не создан]</sup>) |
Благодаря тому, что пользователь сам устанавливает нужное распределение скрытого вектора, вариационный кодировщик хорошо подходит для генерации новых объектов (например, картинок). Для этого достаточно разыграть скрытый вектор согласно его распределению и скормить ее в декодер. Получится объект из того же распределения, что и датасет. | Благодаря тому, что пользователь сам устанавливает нужное распределение скрытого вектора, вариационный кодировщик хорошо подходит для генерации новых объектов (например, картинок). Для этого достаточно разыграть скрытый вектор согласно его распределению и скормить ее в декодер. Получится объект из того же распределения, что и датасет. | ||
+ | |||
+ | == См. также == | ||
+ | *[[:Автокодировщик|Автокодировщик]] | ||
+ | *[[:Generative Adversarial Nets (GAN)|Порождающие состязательные сети]] | ||
+ | |||
+ | == Примечания == | ||
+ | *[https://habr.com/ru/post/429276/ Вариационные автокодировщики: теория и рабочий код] | ||
+ | *[https://jaan.io/what-is-variational-autoencoder-vae-tutorial/ Tutorial - What is a variational autoencoder?] | ||
+ | *[https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf Intuitively Understanding Variational Autoencoders] | ||
+ | |||
+ | == Источники информации == | ||
+ | *[https://arxiv.org/abs/1606.05908 Tutorial on Variational Autoencoders] | ||
+ | *Datalore презентация Дениса Степанова | ||
[[Категория: Машинное обучение]] | [[Категория: Машинное обучение]] | ||
+ | [[Категория: Порождающие модели]] |
Версия 02:10, 28 января 2019
Вариационный автокодировщик (англ. Variational Autoencoder, VAE) — это автокодировщик[на 27.01.19 не создан] (a.k.a. генеративная модель, которая учится отображать объекты в заданное скрытое пространство (и обратно)) основанный на вариационном выводе.
Содержание
Предпосылки
При попытке использования обыкновенного автокодировщика для генерации новых объектов (желательно из того же априорного распределения, что и датасет) возникает следующая проблема. Случайной величиной с каким распределением проинициализировать скрытые векторы, для того, чтобы картинка, после применения декодера, стала похожа на картинки из датасета, но при этом не совпадала ни с одной из них? Ответ на этот вопрос не ясен, в связи с тем, что обыкновенный автокодировщик не может ничего утверждать про распределение скрытого вектора и даже про его область определения. В частности, область определения может быть даже дискретной.
Вариационный автокодировщик в свою очередь предлагает пользователю самому определить распределение скрытого вектора.
Описание
Порождающее моделирование (англ. Generative modelling) — область машинного обучения, имеющая дело с распределением
, определенном на датасете из пространства (возможно многомерного) . Так, например, популярные задачи генерации картинок имеют дело с огромным количеством измерений (пикселей).Также как и в обыкновенных кодировщиках у нас имеется скрытое вероятностное пространство
соответствующее случайной величине (распределенной как-нибудь фиксированно, здесь ). И мы хотим иметь декодер . При этом мы хотим найти такие , чтобы после разыгрывания по мы получили "что-то похожее" на элементы .Вообще, мы хотим, чтобы для любого
мы хотим считать здесь мы заменили на , чтобы явно сделать зависимость между и и после этого применить формулу полной вероятности. Обычно около нуля почти для всех пар . Основная идея в том, что мы хотим теперь генерировать , который бы давали что-то около x и только их суммировать в . Для этого нам требуется ввести еще одно распределение , которое будет получать x и говорить распределение на которое наиболее вероятно будет генерировать нам такой . Теперь нам нужно как-то сделать похожими распределения и .Рассмотрим следующую дивергенцию Кульбака-Лейблера.
Распишем
как .Что эквивалентно:
Рассмотрим эту штуку для
, тогда:Посмотрим, на это равенство. Правую часть мы можем оптимизировать градиентным спуском (пусть пока и не совсем понятно как). В левой же части первое слагаемое -- то, что мы хотим максимизировать. В то же время
мы хотим минимизировать. Если у нас -- достаточно сильная модель, то в какой-то модель она будет хорошо матчить , а значит их дивергенция Кульбака-Лейблера будет почти 0. А значит на это слагаемое можно забить. И стараться максимизировать правую часть. В качестве бонуса мы еще получили более "поддатливую" , вместо нее можно смотреть на .Теперь разберемся как оптимизировать правую часть. Сначала нужно определиться с моделью для
. Обычно ее берут равной . Где и какие-то детерминированные функции на X с обучаемыми параметрами , которые мы впредь будем опускать). Ага, нейронки.
Нетрудно проверить, что для дивергенция Кульбака-Лейблера двух нормальных распределений имеет следующий вид.
- , KLD есть .
Это значит, что
- .
Теперь здесь можно считать градиенты, для BackPropagation. С первым слагаемым в правой части все немного сложнее.
мы можем считать методом Монте-Карло(МК), но тогда такая штука (из-за того, что переменные спрятаны в распределении, из которого мы генерируем себе выборку, для МК) не является гладкой относительно них, а значит непонятно, как проталкивать через это градиент. Для того, чтобы все-таки можно было протолкнуть градиент, применяется так называемый reparametrization trick, который базируется на простой формуле .- .
В такой форме мы уже можем использовать BackPropagation для переменных из функций
и .Следующая картинка лучше поможет осознать структуру VAE и, в частности, зачем нужен (и как работает) reparametrization trick.
На левой части диаграмма без использования reparameterization trick. На правой части диаграмма с использованием reparameterization trick.
взято из https://arxiv.org/pdf/1606.05908.pdf
Пример реализации
Ниже приведена реализация частного случая VAE на языке Python с использованием библиотеки Pytorch. Эта реализация работает с датасетом MNIST. Размерность скрытого слоя — 2. Координаты в нем считаются независимыми (из-за этого, например, матрица
диагональная, и формула для расчета KLD немного другая).class VariationalAutoencoder(nn.Module): def __init__(self): super().__init__() self.mu = nn.Linear(32, 2) self.gamma = nn.Linear(32, 2) self.encoder = nn.Sequential(nn.Linear(784, 32), nn.ReLU(True)) self.decoder = nn.Sequential(nn.Linear(2, 32), nn.ReLU(True), nn.Linear(32, 784), nn.Sigmoid()) def forward(self, x): mu, gamma = self.encode(x) encoding = self.reparameterize(mu, gamma) x = self.decoder(encoding) return x, mu, gamma def reparameterize(self, mu, gamma): if self.training: sigma = torch.exp(0.5*gamma) std_z = Variable(torch.from_numpy(np.random.normal(0, 1, size=sigma.size())).float()) encoding = std_z.mul(sigma).add(mu) return encoding else: return mu def encode(self, x): x = self.encoder(x) mu = self.mu(x) gamma = self.gamma(x) return mu, gamma def decode(self, x): return self.decoder(x) def latent(self, x): mu, gamma = self.encode(x) encoding = self.reparameterize(mu, gamma) return encoding def loss_function(input, output, mu, gamma, batch_size=batch_size): BCE = F.binary_cross_entropy(output, input) KLD = -0.5*torch.sum(1 + gamma - mu.pow(2) - gamma.exp()) KLD /= batch_size*784 return BCE + KLD
Применение
Область применения вариационных автокодировщиков совпадает с областью применения обыкновенных автокодировщиков. А именно:
- Каскадное обучение глубоких сетей (хотя сейчас применяется все реже, в связи с появлением новых методов инициализации весов)
- Уменьшение шума в данных
- Уменьшение размерности данных (иногда работает лучше, чем метод главных компонент[на 27.01.19 не создан])
Благодаря тому, что пользователь сам устанавливает нужное распределение скрытого вектора, вариационный кодировщик хорошо подходит для генерации новых объектов (например, картинок). Для этого достаточно разыграть скрытый вектор согласно его распределению и скормить ее в декодер. Получится объект из того же распределения, что и датасет.
См. также
Примечания
- Вариационные автокодировщики: теория и рабочий код
- Tutorial - What is a variational autoencoder?
- Intuitively Understanding Variational Autoencoders
Источники информации
- Tutorial on Variational Autoencoders
- Datalore презентация Дениса Степанова