Виды ансамблей — различия между версиями
(Добавление определения "Ансамбль") |
(Добавлена формула вероятности) |
||
Строка 1: | Строка 1: | ||
− | |||
== Ансамбль == | == Ансамбль == | ||
Строка 11: | Строка 10: | ||
Взвешенное голосование: <tex> f(x) = \max \limits_{k = 1 .. K} \sum \limits_{i = 1}^M \alpha_i I(f_i(x) = k), \sum \limits_i \alpha_i = 1, \alpha_i > 0</tex> | Взвешенное голосование: <tex> f(x) = \max \limits_{k = 1 .. K} \sum \limits_{i = 1}^M \alpha_i I(f_i(x) = k), \sum \limits_i \alpha_i = 1, \alpha_i > 0</tex> | ||
+ | == Вероятность ошибки == | ||
+ | |||
+ | Пусть <tex>M</tex> - количество присяжный, <tex>p</tex> - вероятность правильного решения одного эксперта, <tex>R</tex> - вероятность правильного решения всего жюри, | ||
+ | <tex>m</tex> - минимальное большинство членов жюри <tex> = floor(N / 2) + 1 </tex> | ||
+ | |||
+ | Тогда <tex> R = \sum \limits_{i = m}^M C_M^i p ^ i (1 - p) ^ {M - i} </tex> | ||
== Бутстрэп == | == Бутстрэп == |
Версия 12:13, 29 января 2019
Содержание
Ансамбль
Рассмотрим задачу классификации на K классов:
Пусть имеется M классификатор ("экспертов"):
Тогда давайте посмотрим новый классификатор на основе данных:
Простое голосование:
Взвешенное голосование:
Вероятность ошибки
Пусть
- количество присяжный, - вероятность правильного решения одного эксперта, - вероятность правильного решения всего жюри, - минимальное большинство членов жюриТогда
Бутстрэп
Метод бутстрэпа (англ. bootstrap) — один из первых и самых простых видов ансамблей, который позволяет оценивать многие статистики сложных распределений и заключается в следующем. Пусть имеется выборка
Обозначим новую выборку через . Повторяя процедуру раз, сгенерируем подвыборок . Теперь мы имеем достаточно большое число выборок и можем оценивать различные статистики исходного распределения.
Бэггинг
Рассмотрим, следующий вид ансамбля — бэггинг (англ. bootstrap aggregation). Пусть имеется обучающая выборка
. С помощью бутстрэпа сгенерируем из неё выборки . Теперь на каждой выборке обучим свой классификатор . Итоговый классификатор будет усреднять ответы всех этих алгоритмов .