Виды ансамблей — различия между версиями
(→Бутстрэп: Откат к предыдущей версии.) |
(→Бэггинг) |
||
Строка 25: | Строка 25: | ||
== Бэггинг == | == Бэггинг == | ||
Рассмотрим, следующий вид ансамбля — бэггинг (англ. ''bootstrap aggregation''). Пусть имеется обучающая выборка <tex>X</tex>. С помощью бутстрэпа сгенерируем из неё выборки <tex>X_1 ... X_M</tex>. Теперь на каждой выборке обучим свой классификатор <tex>a_i(x)</tex>. Итоговый классификатор будет усреднять ответы всех этих алгоритмов <tex>a(x) = \frac{1}{M} \sum\limits_{i = 1}^{M} a_i(x)</tex>. | Рассмотрим, следующий вид ансамбля — бэггинг (англ. ''bootstrap aggregation''). Пусть имеется обучающая выборка <tex>X</tex>. С помощью бутстрэпа сгенерируем из неё выборки <tex>X_1 ... X_M</tex>. Теперь на каждой выборке обучим свой классификатор <tex>a_i(x)</tex>. Итоговый классификатор будет усреднять ответы всех этих алгоритмов <tex>a(x) = \frac{1}{M} \sum\limits_{i = 1}^{M} a_i(x)</tex>. | ||
+ | |||
+ | Пусть имеется выборка <tex>X</tex> размера <tex>N</tex>. Количество классификаторов <tex>M</tex> | ||
+ | |||
+ | Алгоритм классификации в технологии бэггинг на подпространствах: | ||
+ | <ul> | ||
+ | <li> Равномерно берется из выборки <tex>N</tex> объектов с возвращением. Это означает, что <tex>N</tex> раз выбирается произвольный объект выборки (считается, что каждый объект «достается» с одинаковой вероятностью), причем каждый раз из всех исходных объектов. Повторяется данная процедура <tex>M</tex> раз, получая для каждого классификатора свою выборку. | ||
+ | <li> Производится независимое обучения каждого элементарного классификатора (каждого алгоритма, определенного на своем подпространстве). | ||
+ | <li> Производится классификация основной выборки на каждом из подпространств (также независимо). | ||
+ | <li> Принимается окончательное решение о принадлежности объекта одному из классов. Это можно сделать несколькими разными способами, подробнее описано ниже. | ||
+ | </ul> | ||
+ | |||
+ | |||
+ | Окончательное решение о принадлежности объекта классу может приниматься, например, одним из следующих методов: | ||
+ | <ul> | ||
+ | <li> Консенсус: если все элементарные классификаторы присвоили объекту одну и ту же метку, то относим объект к выбранному классу. | ||
+ | <li> Простое большинство: консенсус достижим очень редко, поэтому чаще всего используют метод простого большинства. Здесь объекту присваивается метка того класса, который определило для него большинство элементарных классификаторов. | ||
+ | <li> Взвешивание классификаторов: если классификаторов четное количество, то голосов может получиться поровну, еще возможно, что для эксперты одна из групп параметров важна в большей степени, тогда прибегают к взвешиванию классификаторов. То есть при голосовании голос классификатора умножается на его вес. | ||
+ | </ul> |
Версия 14:28, 30 января 2019
Содержание
Ансамбль
Рассмотрим задачу классификации на K классов:
Пусть имеется M классификатор ("экспертов"):
Тогда давайте посмотрим новый классификатор на основе данных:
Простое голосование:
Взвешенное голосование:
Вероятность ошибки
Пусть
- количество присяжный, - вероятность правильного решения одного эксперта, - вероятность правильного решения всего жюри, - минимальное большинство членов жюриТогда
https://yadi.sk/i/4GVy9FPDJnL-cQ https://yadi.sk/i/Tjwyk4Bkc2Ck3g
Бутстрэп
Метод бутстрэпа (англ. bootstrap) — один из первых и самых простых видов ансамблей, который позволяет оценивать многие статистики сложных распределений и заключается в следующем. Пусть имеется выборка
Обозначим новую выборку через . Повторяя процедуру раз, сгенерируем подвыборок . Теперь мы имеем достаточно большое число выборок и можем оценивать различные статистики исходного распределения.
Бэггинг
Рассмотрим, следующий вид ансамбля — бэггинг (англ. bootstrap aggregation). Пусть имеется обучающая выборка
. С помощью бутстрэпа сгенерируем из неё выборки . Теперь на каждой выборке обучим свой классификатор . Итоговый классификатор будет усреднять ответы всех этих алгоритмов .Пусть имеется выборка
размера . Количество классификаторовАлгоритм классификации в технологии бэггинг на подпространствах:
- Равномерно берется из выборки объектов с возвращением. Это означает, что раз выбирается произвольный объект выборки (считается, что каждый объект «достается» с одинаковой вероятностью), причем каждый раз из всех исходных объектов. Повторяется данная процедура раз, получая для каждого классификатора свою выборку.
- Производится независимое обучения каждого элементарного классификатора (каждого алгоритма, определенного на своем подпространстве).
- Производится классификация основной выборки на каждом из подпространств (также независимо).
- Принимается окончательное решение о принадлежности объекта одному из классов. Это можно сделать несколькими разными способами, подробнее описано ниже.
Окончательное решение о принадлежности объекта классу может приниматься, например, одним из следующих методов:
- Консенсус: если все элементарные классификаторы присвоили объекту одну и ту же метку, то относим объект к выбранному классу.
- Простое большинство: консенсус достижим очень редко, поэтому чаще всего используют метод простого большинства. Здесь объекту присваивается метка того класса, который определило для него большинство элементарных классификаторов.
- Взвешивание классификаторов: если классификаторов четное количество, то голосов может получиться поровну, еще возможно, что для эксперты одна из групп параметров важна в большей степени, тогда прибегают к взвешиванию классификаторов. То есть при голосовании голос классификатора умножается на его вес.