Связь вершинного покрытия и независимого множества — различия между версиями
(→Независимое множество) |
(→Связь вершинного покрытия и независимого множества) |
||
Строка 12: | Строка 12: | ||
<br/><br/> | <br/><br/> | ||
+ | <br/> | ||
==Связь вершинного покрытия и независимого множества== | ==Связь вершинного покрытия и независимого множества== | ||
{{Теорема|statement= | {{Теорема|statement= | ||
Строка 22: | Строка 23: | ||
Значит, <tex>|V| = |MIVS| + |MVC|</tex>, и <tex>V \backslash MVC</tex> является максимальным независимым множеством, а <tex>V \backslash MIVS</tex> - минимальным вершинным покрытием. | Значит, <tex>|V| = |MIVS| + |MVC|</tex>, и <tex>V \backslash MVC</tex> является максимальным независимым множеством, а <tex>V \backslash MIVS</tex> - минимальным вершинным покрытием. | ||
}} | }} | ||
+ | |||
==См. также == | ==См. также == | ||
[[Связь_максимального_паросочетания_и_минимального_вершинного_покрытия_в_двудольных_графах|Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах]]. | [[Связь_максимального_паросочетания_и_минимального_вершинного_покрытия_в_двудольных_графах|Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах]]. |
Версия 23:33, 15 января 2011
Содержание
Определения
Независимое множество
Определение:
Независимым множеством вершин графа
называется такое множество , что
.
Определение:
Максимальным независимым множеством
называется IVS максимальной мощности.
Связь вершинного покрытия и независимого множества
Теорема: |
Дополнение минимального вершинного покрытия является максимальным независимым множеством. |
Доказательство: |
Рассмотрим произвольное графа. Из определения следует, что любое ребро соединяет либо вершину из и , либо вершины множества . Таким образом, каждое ребро инцидентно некоторой вершине множества , то есть является некоторым вершинным покрытием. Тогда или .Рассмотрим произвольное Значит, графа. Так как каждое ребро инцидентно хотя бы одной вершине из , то является независимым множеством. Тогда или . , и является максимальным независимым множеством, а - минимальным вершинным покрытием. |
См. также
Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах.