Neural Style Transfer — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Источники информации)
(Пример кода на PyTorch)
Строка 62: Строка 62:
 
== Пример кода на PyTorch ==
 
== Пример кода на PyTorch ==
  
class ContentLoss(nn.Module):
+
Content Loss
 +
  class ContentLoss(nn.Module):
 +
   
 +
  def __init__(self, target,):
 +
    super(ContentLoss, self).__init__()
 +
    <font color="green"># we 'detach' the target content from the tree used</font>
 +
    <font color="green"># to dynamically compute the gradient: this is a stated value,</font>
 +
    <font color="green"># not a variable. Otherwise the forward method of the criterion</font>
 +
    <font color="green"># will throw an error.</font>
 +
    self.target = target.detach()
 +
   
 +
  def forward(self, input):
 +
    self.loss = F.mse_loss(input, self.target)
 +
    return input
  
    def __init__(self, target,):
+
Style Loss
        super(ContentLoss, self).__init__()
+
  def gram_matrix(input):
        # we 'detach' the target content from the tree used
+
    a, b, c, d = input.size() # a=batch size(=1)
        # to dynamically compute the gradient: this is a stated value,
+
    <font color="green"># b=number of feature maps</font>
        # not a variable. Otherwise the forward method of the criterion
+
    <font color="green"># (c,d)=dimensions of a f. map (N=c*d)</font>
        # will throw an error.
+
    features = input.view(a * b, c * d)  # resise F_XL into \hat F_XL
        self.target = target.detach()
+
    G = torch.mm(features, features.t())  # compute the gram product
 +
    <font color="green"># we 'normalize' the values of the gram matrix</font>
 +
    <font color="green"># by dividing by the number of element in each feature maps.</font>
 +
    return G.div(a * b * c * d)
  
     def forward(self, input):
+
  class StyleLoss(nn.Module):
        self.loss = F.mse_loss(input, self.target)
+
      
        return input
+
  def __init__(self, target_feature):
 +
    super(StyleLoss, self).__init__()
 +
    self.target = gram_matrix(target_feature).detach()
 +
   
 +
  def forward(self, input):
 +
    G = gram_matrix(input)
 +
    self.loss = F.mse_loss(G, self.target)
 +
    return input
 +
 
 +
Importing the Model
 +
  cnn = models.vgg19(pretrained=True).features.to(device).eval()
 +
 
 +
 
 +
   
 +
Разбиение датасета на тренировочный и тестовый:
 +
  <font color="green"># Split the data into training/testing sets</font>
 +
  x_train = diabetes_X[:<font color="blue">-20</font>]
 +
  x_test = diabetes_X[<font color="blue">-20</font>:]
 +
 
 +
  <font color="green"># Split the targets into training/testing sets</font>
 +
  y_train = diabetes.target[:<font color="blue">-20</font>]
 +
  y_test = diabetes.target[<font color="blue">-20</font>:]
 +
 
 +
  '''import''' numpy '''as''' np
 +
  '''import''' matplotlib.pyplot '''as''' plt
 +
 
 +
  plt.figure(figsize=(<font color="blue">20</font>,<font color="blue">4</font>))
 +
  '''for''' index, (image, label) '''in''' enumerate(zip(digits.data[<font color="blue">0</font>:<font color="blue">3</font>], digits.target[<font color="blue">0</font>:<font color="blue">3</font>])):
 +
    plt.subplot(<font color="blue">1</font>, <font color="blue">3</font>, index + <font color="blue">1</font>)
 +
    plt.imshow(np.reshape(image, (<font color="blue">8</font>,<font color="blue">8</font>)), cmap=plt.cm.gray)
 +
    plt.title(<font color="red">'Training: %i\n'</font> % label, fontsize = <font color="blue">20</font>)
  
 
==См. также==
 
==См. также==

Версия 04:33, 18 апреля 2019

Описание алгоритма

Алгоритм нейронного переноса стиля[1] (англ. Neural Style Transfer), разработанный Леоном Гатисом, Александром Экером и Матиасом Бетге, позволяет получить изображение и воспроизводить его в новом художественном стиле. Алгоритм берет три изображения, входное изображение (англ. input image), изображение контента (англ. content image) и изображение стиля (англ. style image), и изменяет входные данные так, чтобы они соответствовали содержанию изображения контента и художественному стилю изображения стиля. Авторами в качестве модели сверточной нейронной сети предлагается использовать сеть VGG16.

Принцип работы алгоритма

Рассмотрим 1-й сверточный слой (англ. convolution layer) VGG16, который использует ядро 3x3 и обучает 64 карты признаков (англ. feature map) для генерации представления изображения размерности 224x224x64, принимая 3-канальное изображение размером 224x224 в качестве входных данных (Рисунок 2). Во время обучения эти карты признаков научились обнаруживать простые шаблоны, например, такие как прямые линии, окружности или даже не имеющие никакого смысла для человеческого глаза шаблоны, которые тем не менее имеют огромное значение для этой модели. Такое "обнаружение" шаблонов называется обучением представления признаков. Теперь давайте рассмотрим 10-й сверточный слой VGG16, который использует ядро 3x3 с 512 картами признаков для обучения и в итоге генерирует вывод представления изображения размерности 28x28x512. Нейроны 10-го слоя уже могут обнаруживать более сложные шаблоны такие как, например, колесо автомобиля, окно или дерево и т.д.

Собственно вышеперечисленные свойства характерны для любой сверточной нейронной сети, работа которой обычно интерпретируется как переход от конкретных особенностей изображения к более абстрактным деталям, и далее к ещё более абстрактным деталям вплоть до выделения понятий высокого уровня. При этом сеть самонастраивается и вырабатывает необходимую иерархию абстрактных признаков (последовательности карт признаков), фильтруя маловажные детали и выделяя существенное.

Такая природа представления кодирования сама по себе является ключом к передаче стиля, который используется для вычисления функции потерь между сгенерированным изображением относительно изображения контента и изображения стиля. При обучении модели более десяти тысяч изображений на класс модель может генерировать аналогичное представление признаков для множества различных изображений, если они принадлежат к одному классу или имеют схожий контент или стиль.

Следовательно, имеет смысл использовать разницу в значении представления признаков сгенерированного изображения по содержанию и по стилю изображения, чтобы направлять итерации, через которые мы производим само сгенерированное изображение, но как убедиться, что изображение с содержанием C и сгенерированное изображение G похожи по своему содержанию, а не по стилю, в то время как сгенерированное изображение наследует только похожее представление стиля изображения стиля S, а не само изображение стиля в целом. Это решается разделением функции потерь на две части: одна — потеря контента, а другая — потеря стиля.

Функция потерь

[math]L_{total}(S, C, G) = \alpha * L_{content}(C, G) + \beta * L_{style}(S, G)[/math]

В уравнении выше, чтобы получить общую потерю [math]L_{total}[/math] нужно рассчитать потерю содержимого [math]L_{content}[/math] и потерю стиля [math]L_{style}[/math], а также [math]\alpha[/math] и [math]\beta[/math] — гиперпараметры, которые используются для определения весов для каждого типа потерь, то есть эти параметры можно представить просто как "рычаги" для управления тем, сколько контента / стиля мы хотим наследовать в сгенерированном изображении.

Во время каждой итерации все три изображения, передаются через модель VGG16. Значения функции активации нейронов, которые кодируют представление признаков данного изображения на определенных слоях, принимаются как входные данные для этих двух функций потерь. Также стоит добавить: изначально мы случайным образом инициализируем сгенерированное изображение, например, матрицей случайного шума такого же разрешения, как и изображение контента. С каждой итерацией мы изменяем сгенерированное изображение, чтобы минимизировать общую потерю L.

Функция потери контента

Возьмем функциональное представление 7-го сверточного слой VGG16. Чтобы вычислить потерю контента, пропускаем изображение контента и сгенерированное изображение через VGG16 и получаем значения функции активации (выходы) 7-го слоя для обоих этих изображений. После каждого сверточного слоя идет ReLU, поэтому мы будем обозначать выход этого слоя в целом как relu_3_3 (поскольку это выход третьего сверточного слоя третьего набора / блока сверток) (Рисунок 2). Наконец, мы находим L2-норму поэлементного вычитания между этими двумя матрицами значений функции активации следующим образом:


[math]L_{content}(C, G, L) = \frac{1}{2} \sum\limits_{ij}(a[L](C)_{ij} - a[L](G)_{ij})^2[/math]

Это поможет сохранить исходный контент в сгенерированном изображении, а также минимизировать разницу в представлении признаков, которое логически фокусируется на разнице между содержимым обоих изображений.

Функция потери стиля

В отличии от потери контента потерю стиля нельзя рассчитать с помощью разницы значений функции активации нейронов. Необходимо найти корреляцию между значениями функции активации по разным каналам одного и того же слоя. И для этого авторы алгоритма предлагают воспользоваться матрицей Грама.

Матрица Грама

Рассмотрим, как мы передаем наше изображение стиля через VGG16 и получаем значения функции активации из 7-го уровня, который генерирует матрицу представления объектов размером 56x56x256. В этом трехмерном массиве имеется 256 каналов размером 56x56 каждый. Теперь предположим, что есть канал A, чьи блоки активации могут активироваться, когда они сталкиваются с разделом изображения, содержащим коричнево-черные полосы, а затем есть канал B, чьи блоки активации могут активироваться, когда они сталкиваются с чем-то похожим на глазное яблоко. Если оба этих канала A и B активируются вместе для одного и того же входа, существует высокая вероятность того, что изображение может содержать лицо тигра (поскольку у него было два канала с высокими значениями, которые активируются для глазного яблока и коричнево-черных полос). Теперь, если оба эти канала будут запущены с высокими значениями активации, это означает, что они будут иметь высокую корреляцию по сравнению с корреляцией между каналом A и С, где канал С может активироваться, когда он видит ромбовидный шаблон.

Таким образом, чтобы получить корреляцию всех этих каналов друг с другом, нам нужно вычислить нечто называемое матрицей Грама, будем использовать ее для измерения степени корреляции между каналами, которая позже будет служить мерой самого стиля. Рисунок 4 помогает лучше понять как рассчитывается матрица Грама на примере.

Функция потерь на основе корреляции матриц Грама

Теперь, как вы можете видеть, как каждый элемент матрицы Грама содержит меру корреляции всех каналов относительно друг друга. Обозначим матрицу Грама стилевого изображения слоя [math]l[/math] как [math]GM[l](S)[/math], а матрицу Грама сгенерированного изображения того же слоя [math]GM[l](G)[/math]. Обе матрицы были вычислены из одного и того же слоя, следовательно, с использованием одного и того же числа каналов, что привело к тому, что итоговая матрица размера [math]channels \times channels[/math]. Теперь, если мы найдем сумму квадратов разности или L2-норму вычитания элементов этих двух матриц и попытаемся минимизировать ее, то в конечном итоге это приведет к минимизации разницы между изображением стиля и сгенерированным изображением.

[math]L_{GM}(S, G, l) = \frac{1}{4N_l^2M_l^2} \sum\limits_{ij}(GM[l](S)_{ij} - GM[l](G)_{ij})^2[/math]

В вышеприведенном уравнении [math]N_{l}[/math] представляет номер канала в карте признаков / выходных данных уровня [math]l[/math], а [math]M_{l}[/math] представляет [math]height*width[/math] карты признаков / выходных данных слоя [math]l[/math].

Так как при вычислении потери стиля мы используем несколько уровней активации, это позволяет назначать разные весовые коэффициенты для потери на каждом уровне.

[math]L_{style}(S, G) = \sum\limits_{l=0}^L w_l * L_{GM}(S, G, l)[/math]

Пример кода на PyTorch

Content Loss

 class ContentLoss(nn.Module):
   
 def __init__(self, target,):
   super(ContentLoss, self).__init__()
   # we 'detach' the target content from the tree used
   # to dynamically compute the gradient: this is a stated value,
   # not a variable. Otherwise the forward method of the criterion
   # will throw an error.
   self.target = target.detach()
   
 def forward(self, input):
   self.loss = F.mse_loss(input, self.target)
   return input

Style Loss

 def gram_matrix(input):
   a, b, c, d = input.size()  # a=batch size(=1)
   # b=number of feature maps
   # (c,d)=dimensions of a f. map (N=c*d)
   features = input.view(a * b, c * d)  # resise F_XL into \hat F_XL
   G = torch.mm(features, features.t())  # compute the gram product
   # we 'normalize' the values of the gram matrix
   # by dividing by the number of element in each feature maps.
   return G.div(a * b * c * d)
 class StyleLoss(nn.Module):
   
 def __init__(self, target_feature):
   super(StyleLoss, self).__init__()
   self.target = gram_matrix(target_feature).detach()
   
 def forward(self, input):
   G = gram_matrix(input)
   self.loss = F.mse_loss(G, self.target)
   return input

Importing the Model

 cnn = models.vgg19(pretrained=True).features.to(device).eval()


Разбиение датасета на тренировочный и тестовый:

 # Split the data into training/testing sets
 x_train = diabetes_X[:-20]
 x_test = diabetes_X[-20:]
 
 # Split the targets into training/testing sets
 y_train = diabetes.target[:-20]
 y_test = diabetes.target[-20:]
 import numpy as np
 import matplotlib.pyplot as plt
 
 plt.figure(figsize=(20,4))
 for index, (image, label) in enumerate(zip(digits.data[0:3], digits.target[0:3])):
   plt.subplot(1, 3, index + 1)
   plt.imshow(np.reshape(image, (8,8)), cmap=plt.cm.gray)
   plt.title('Training: %i\n' % label, fontsize = 20)

См. также

Примечания

Источники информации