Гипотеза Хивуда — различия между версиями
Gaporf (обсуждение | вклад) м |
Gaporf (обсуждение | вклад) (→Теорема о нижней границе хроматического числа поверхности: доказал беспруфный факт) |
||
Строка 14: | Строка 14: | ||
|proof= | |proof= | ||
− | + | Воспользуемся формулой Эйлера <tex>V + F - E = 2 - 2n</tex>, тогда если представить самый худший случай, что каждая грань {{---}} треугольник, то отсюда получаем следующее неравенство: | |
+ | |||
+ | <tex>E \geqslant 3 \left( V - 2 + 2n \right)</tex> | ||
+ | |||
+ | <tex>n \geqslant \dfrac{1}{6} E - \dfrac{1}{2} \left( V - 2 \right)</tex>. | ||
+ | |||
+ | Рассмотрим полный граф <tex>K_p</tex>, тогда получаем, что | ||
+ | |||
+ | <tex>\gamma \left( K_p \right) \geqslant \dfrac{1}{6} \dfrac{p (p - 1)}{2} - \dfrac{p - 2}{2}</tex> | ||
+ | |||
+ | <tex>\gamma \left( K_p \right) \geqslant \left\{ \dfrac{(p - 3)(p - 4)}{12} \right\}</tex>, функция монотонно возрастает при <tex>p \geqslant 4</tex>, и для любого <tex>n</tex> наибольшее значение функция <tex>\left\{ \dfrac{(p - 3)(p - 4)}{12} \right\}</tex> достигается при <tex>p=\left[\dfrac{7 + \sqrt{1 + 48n}}{2} \right]</tex>. Поскольку <tex>\chi\left(K_p\right) = p</tex>, откуда получаем, что <tex>\chi \left( S_n \right) \geqslant \left[ \dfrac{7 + \sqrt{1 + 48n}}{2} \right]</tex>. | ||
}} | }} | ||
Версия 14:14, 24 декабря 2019
Определение: |
Хроматическим числом поверхности поверхности | или -ым числом Хивуда называется число , равное максимальному хроматическому числу графа, который можно уложить на поверхность -ого рода.
Содержание
Теорема о нижней границе хроматического числа поверхности
Теорема (Теорема Рингеля и Янгса): |
Для любого положительного целого числа хроматическое число поверхности -ого рода . |
Доказательство: |
Воспользуемся формулой Эйлера , тогда если представить самый худший случай, что каждая грань — треугольник, то отсюда получаем следующее неравенство:
. Рассмотрим полный граф , тогда получаем, что, функция монотонно возрастает при , и для любого наибольшее значение функция достигается при . Поскольку , откуда получаем, что . |
Теорема о верхней границе хроматического числа поверхности
Теорема (Гипотеза Хивуда): |
Для любого положительного целого числа хроматическое число поверхности -ого рода . |
Доказательство: |
Пусть задан граф с вершина, рёбрами и гранями, также будем считать, что — триангуляция (добавляя таким образом рёбра мы всё ещё получаем граф, который можно уложить на поверхности -ого рода). Обозначим за — среднюю степень вершины графа , тогда должно быть справедливым следующее равенство:
Воспользуемся формулой Эйлера , откуда и и подставляя в первое равенство получаем
Поскольку , то
Найдём единственный положительный корень неравенства
Обозначим за . Если , то тогда граф очевидно можно раскрасить в цветов и неравенство верное. Допустим, что , тогдаЗначит в такое графе существует хотя бы одна вершина степени не больше , стянем её с любой соседней и получим новый граф с вершинами. Если , то граф можно раскрасить в цветов, значит и сам граф можно также раскрасить в цветов, если , то опять найдём вершину степени и снова стянем её и будем продолжать так до тех пор, пока не получим желаемый граф. |
Из всего выше сказанного получаем, что
в точности равно .Проблема четырёх красок
Заметим, что теорема Хивуда не работает при проблема четырёх красок не может быть доказана с помощью этой теоремы, однако при подстановке получаем .
, поэтомуСм. также
Источники информации
- Wikipedia — Heawood conjecture
- Последовательность чисел Хивуда
- Ф.Харари «Теория графов» — М.: Мир, 1973 г. — стр. 162 - 164