Порождающие модели — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Порождающие модели на основе нейронных сетей)
(Классификация задачи)
Строка 14: Строка 14:
  
 
Мы хотим научиться создавать правдоподобный объект относительно некоторой скрытой структуры исходных объектов. Давайте изучим распределение по ним, а затем просто будем сэмплировать новый объект из этого распределения. Значит эта задача относится к классу задач [[Общие понятия#Обучение без учителя (англ. Unsupervised learning)|обучения без учителя]].
 
Мы хотим научиться создавать правдоподобный объект относительно некоторой скрытой структуры исходных объектов. Давайте изучим распределение по ним, а затем просто будем сэмплировать новый объект из этого распределения. Значит эта задача относится к классу задач [[Общие понятия#Обучение без учителя (англ. Unsupervised learning)|обучения без учителя]].
 +
 +
== Вычисление распределения ==
 +
[[Файл:Taxonomy.png|500px|thumb|right]]
 +
Оценка плотности распределения является основной задачей порождающих моделей.
 +
 +
Два основных подхода:
 +
* Явный: определить распределение <tex>p_{model}</tex>, описывающее объекты и генерировать данные из него
 +
* Неявный: получить некоторое распределение, оценить его близость с <tex>p_{model}</tex> через дивергенцию Кульбака-Лейблера<ref>[https://ru.wikipedia.org/wiki/Расстояние_Кульбака_—_Лейблера Расстояние Кульбака—Лейблера]</ref>
  
 
== Глубокие порождающие модели на основе нейронных сетей ==
 
== Глубокие порождающие модели на основе нейронных сетей ==

Версия 11:20, 10 февраля 2020

Порождающая модель пытается генерировать убедительные 0 и 1, для этого моделирует распределение по всему пространству данных. Напротив, дискриминативная модель старается разделить данные, без необходимости точно моделировать, как объекты размещаются по обе стороны от линии.

Порождающие модели (англ. generative model) — это класс моделей совместного распределения вероятностей [math]p(x, y)[/math] для генерации новых объектов на основе исходных данных.

Порождающая модель может генерировать новые фотографии животных, которые выглядят как настоящие животные, в то время как дискриминативная модель (англ. discriminative model)[1] может отличить собаку от кошки.



Классификация задачи

Можно использовать некоторые эмпирические правила для генерации новых объектов, не используя машинного обучения.

Требуется чтобы новые объекты были правдоподобными в своей области. Новое изображение человека должно быть правдоподобным, как изображение, но также человек на нём должен быть правдоподобным как человек.

Мы хотим научиться создавать правдоподобный объект относительно некоторой скрытой структуры исходных объектов. Давайте изучим распределение по ним, а затем просто будем сэмплировать новый объект из этого распределения. Значит эта задача относится к классу задач обучения без учителя.

Вычисление распределения

Taxonomy.png

Оценка плотности распределения является основной задачей порождающих моделей.

Два основных подхода:

  • Явный: определить распределение [math]p_{model}[/math], описывающее объекты и генерировать данные из него
  • Неявный: получить некоторое распределение, оценить его близость с [math]p_{model}[/math] через дивергенцию Кульбака-Лейблера[2]

Глубокие порождающие модели на основе нейронных сетей

См. также

Примечания

Источники информации