PixelRNN и PixelCNN — различия между версиями
Tklochkov (обсуждение | вклад) (→RowLSTM) |
Tklochkov (обсуждение | вклад) (→Идея) |
||
Строка 15: | Строка 15: | ||
Т.к. утверждается, что значение текущего пикселя зависит от значений предыдущего, то уместно использовать [[:Рекуррентные_нейронные_сети|RNN]], а точнее [[Долгая краткосрочная память|LSTM]]. В ранних работах уже использовался данный подход, и вычисление скрытого состояния происходило следующим образом: <tex>h_{i,j}=f(h_{i-1,j}, h_{i,j-1}, x_{i,j})</tex>, т.е. для того, чтобы вычислить текущее скрытое состояние, нужно было подсчитать все предыдущие, что занимает достаточно много времени. | Т.к. утверждается, что значение текущего пикселя зависит от значений предыдущего, то уместно использовать [[:Рекуррентные_нейронные_сети|RNN]], а точнее [[Долгая краткосрочная память|LSTM]]. В ранних работах уже использовался данный подход, и вычисление скрытого состояния происходило следующим образом: <tex>h_{i,j}=f(h_{i-1,j}, h_{i,j-1}, x_{i,j})</tex>, т.е. для того, чтобы вычислить текущее скрытое состояние, нужно было подсчитать все предыдущие, что занимает достаточно много времени. | ||
− | Авторы алгоритма модернизировали [[Долгая краткосрочная память|LSTM]] в '''RowLSTM''' и '''BiLSTM''' таким образом, чтобы стало возможным распараллеливание вычислений, что в итоге положительно сказывается на времени обучения модели. | + | Авторы алгоритма модернизировали [[Долгая краткосрочная память|LSTM]] в '''RowLSTM''' и '''Diagonal BiLSTM''' таким образом, чтобы стало возможным распараллеливание вычислений, что в итоге положительно сказывается на времени обучения модели. |
=== RowLSTM === | === RowLSTM === | ||
Строка 28: | Строка 28: | ||
=== Diagonal BiLSTM === | === Diagonal BiLSTM === | ||
+ | [[File:pixel-3.png|350px|thumb|Рисунок 3. Операция сдвига в Diagonal BiLSTM. Параллелизация происходит по диагоналям.]] | ||
+ | В данной версии скрытое состояние считается таким же образом, как и в наивном подходе: <tex>h_{i,j}=f(h_{i-1,j}, h_{i,j-1}, x_{i,j})</tex>, но при этом есть хитрость в самом вычислении. Построчно сдвинем строки вправо на один пиксель относительно предыдущей, а затем вычислим скрытые состояния в каждом столбце, как показано на рисунке 3. | ||
+ | Данная версия позволяет учитывать контекст более качественно, но при этом занимает больше времени, чем RowLSTM. | ||
== Сравнение с GAN == | == Сравнение с GAN == | ||
== Примеры реализации == | == Примеры реализации == |
Версия 22:34, 22 марта 2020
PixelRNN/PixelCNN - алгоритмы машинного обучения, входящие в семейство авторегрессивных моделей. Используются для генерации и дополнения изображений. Алгоритмы были представлены в 2016 году компанией DeepMind и являются предшественниками алгоритма WaveNet, который используется в голосовом помощнике Google.
Основным преимуществом PixelRNN/PixelCNN является уменьшение времени обучения, по сравнению с наивными способами попиксельной генерации изображений.
Содержание
Постановка задачи
Пусть дано черно-белое изображение
размером . Построчно преобразуем картинку в вектор , соединяя конец текущей строки с началом следующей. В таком представлении изображения можно предположить, что значение любого пикселя может зависеть от значений предыдущих пикселей .Тогда значение пикселя
можно выразить через условную вероятность , и, используя цепное правило для вероятностей, оценка совместного распределения всех пикселей будет записываться в следующем виде: .Задача алгоритма - восстановить данное распределение. Учитывая тот факт, что любой пиксель принимает значение
, необходимо восстановить лишь дискретное распределение.Идея
Т.к. утверждается, что значение текущего пикселя зависит от значений предыдущего, то уместно использовать RNN, а точнее LSTM. В ранних работах уже использовался данный подход, и вычисление скрытого состояния происходило следующим образом: , т.е. для того, чтобы вычислить текущее скрытое состояние, нужно было подсчитать все предыдущие, что занимает достаточно много времени.
Авторы алгоритма модернизировали LSTM в RowLSTM и Diagonal BiLSTM таким образом, чтобы стало возможным распараллеливание вычислений, что в итоге положительно сказывается на времени обучения модели.
RowLSTM
В данной модификации LSTM предлагается рассчитывать скрытое состояние следующим образом: .
Как видно из формулы и Рисунка 2, значение текущего скрытого состояния не зависит от предыдущего слева, а зависит от предыдущих сверху, которые можно параллельно рассчитать.
Из плюсов данного алгоритма можно отметить его быстродействие - модель обучается быстрее, нежели наивный LSTM. Из минусов - относительно плохое качество получаемых изображений. Это связанно как минимум с тем, что мы используем контекст пикселей с предыдущей строки, но никак не используем контекст соседнего слева пикселя, которые является достаточно важным, т.к. является ближайшим с точки зрения построчной генерации изображения.
Отсюда напрашивается идея каким-то образом найти скрытое состояние пикселя слева, но при этом не потерять в производительности.
Diagonal BiLSTM
В данной версии скрытое состояние считается таким же образом, как и в наивном подходе:
, но при этом есть хитрость в самом вычислении. Построчно сдвинем строки вправо на один пиксель относительно предыдущей, а затем вычислим скрытые состояния в каждом столбце, как показано на рисунке 3.Данная версия позволяет учитывать контекст более качественно, но при этом занимает больше времени, чем RowLSTM.