PixelRNN и PixelCNN — различия между версиями
Tklochkov (обсуждение | вклад) (→Уменьшение размерности: - изменение чисел на слова) |
Tklochkov (обсуждение | вклад) (Тире) |
||
Строка 1: | Строка 1: | ||
[[File:pixel-1.png|450px|thumb|Рисунок 1. Пример использования PixelRNN/PixelCNN сетей]] | [[File:pixel-1.png|450px|thumb|Рисунок 1. Пример использования PixelRNN/PixelCNN сетей]] | ||
− | '''''PixelRNN''''' и '''''PixelCNN''''' - алгоритмы машинного обучения, входящие в семейство авторегрессивных моделей. Используются для генерации и дополнения изображений. Алгоритмы были представлены в 2016 году компанией ''DeepMind''<ref name=PixelNet>[https://arxiv.org/abs/1601.06759 Pixel Recurrent Neural Networks]</ref> и являются предшественниками алгоритма ''WaveNet''<ref name=WaveNet>[https://deepmind.com/blog/article/wavenet-generative-model-raw-audio WaveNet: A generative model for raw audio]</ref>, который используется в голосовом помощнике ''Google''. | + | '''''PixelRNN''''' и '''''PixelCNN''''' {{---}} алгоритмы машинного обучения, входящие в семейство авторегрессивных моделей. Используются для генерации и дополнения изображений. Алгоритмы были представлены в 2016 году компанией ''DeepMind''<ref name=PixelNet>[https://arxiv.org/abs/1601.06759 Pixel Recurrent Neural Networks]</ref> и являются предшественниками алгоритма ''WaveNet''<ref name=WaveNet>[https://deepmind.com/blog/article/wavenet-generative-model-raw-audio WaveNet: A generative model for raw audio]</ref>, который используется в голосовом помощнике ''Google''. |
Основным преимуществом ''PixelRNN'' и ''PixelCNN'' является уменьшение времени обучения, по сравнению с наивными способами попиксельной генерации изображений. | Основным преимуществом ''PixelRNN'' и ''PixelCNN'' является уменьшение времени обучения, по сравнению с наивными способами попиксельной генерации изображений. | ||
Строка 23: | Строка 23: | ||
Как видно из формулы и Рисунка 2, значение текущего скрытого состояния не зависит от предыдущего слева, а зависит от предыдущих сверху, которые можно параллельно рассчитать. | Как видно из формулы и Рисунка 2, значение текущего скрытого состояния не зависит от предыдущего слева, а зависит от предыдущих сверху, которые можно параллельно рассчитать. | ||
− | Из плюсов данного алгоритма можно отметить его быстродействие - модель обучается быстрее, нежели наивный [[Долгая краткосрочная память|''LSTM'']]. Из минусов - относительно плохое качество получаемых изображений. Это связанно как минимум с тем, что мы используем контекст пикселей с предыдущей строки, но никак не используем контекст соседнего слева пикселя, которые является достаточно важным, т.к. является ближайшим с точки зрения построчной генерации изображения. | + | Из плюсов данного алгоритма можно отметить его быстродействие {{---}} модель обучается быстрее, нежели наивный [[Долгая краткосрочная память|''LSTM'']]. Из минусов - относительно плохое качество получаемых изображений. Это связанно как минимум с тем, что мы используем контекст пикселей с предыдущей строки, но никак не используем контекст соседнего слева пикселя, которые является достаточно важным, т.к. является ближайшим с точки зрения построчной генерации изображения. |
Отсюда напрашивается идея каким-то образом найти скрытое состояние пикселя слева, но при этом не потерять в производительности. | Отсюда напрашивается идея каким-то образом найти скрытое состояние пикселя слева, но при этом не потерять в производительности. | ||
Строка 40: | Строка 40: | ||
=== Маскированные сверточные слои === | === Маскированные сверточные слои === | ||
− | В описаниях алгоритмов фигурируют два типа маскированных сверточных слоя - '''''MaskA''''', '''''MaskB'''''. Они необходимы для сокрытия от алгоритма лишней информации и учета контекста - чтобы не обрабатывать изображение после каждого подсчета, удаляя значения пикселей, можно применить маску к изображению, что является более быстрой операцией. | + | В описаниях алгоритмов фигурируют два типа маскированных сверточных слоя {{---}} '''''MaskA''''', '''''MaskB'''''. Они необходимы для сокрытия от алгоритма лишней информации и учета контекста - чтобы не обрабатывать изображение после каждого подсчета, удаляя значения пикселей, можно применить маску к изображению, что является более быстрой операцией. |
− | Для каждого пикселя в цветном изображении в порядке очереди существуют три контекста: красный канал, зеленый и синий. В данном алгоритме очередь важна, т.е. если сейчас обрабатывается красный канал, то контекст только от предыдущих значений красного канала, если зеленый - то от всех значений на красном канале и предыдущих значениях на зеленом и т.д. | + | Для каждого пикселя в цветном изображении в порядке очереди существуют три контекста: красный канал, зеленый и синий. В данном алгоритме очередь важна, т.е. если сейчас обрабатывается красный канал, то контекст только от предыдущих значений красного канала, если зеленый {{---}} то от всех значений на красном канале и предыдущих значениях на зеленом и т.д. |
'''''MaskA''''' используется для того, чтобы учитывать контекст предыдущих каналов, но при этом не учитывать контекст от предыдущих значений текущего канала и следующих каналов. | '''''MaskA''''' используется для того, чтобы учитывать контекст предыдущих каналов, но при этом не учитывать контекст от предыдущих значений текущего канала и следующих каналов. | ||
Строка 66: | Строка 66: | ||
</tex> | </tex> | ||
− | где <tex>\sigma</tex> - функция активации, <tex>\circledast</tex> - операция свертки, <tex>\odot</tex> - поэлементное умножение. | + | где <tex>\sigma</tex> {{---}} функция активации, <tex>\circledast</tex> {{---}} операция свертки, <tex>\odot</tex> {{---}} поэлементное умножение. |
=== Архитектура PixelRNN === | === Архитектура PixelRNN === | ||
# ''MaskA'' размером <tex>7\times 7</tex> | # ''MaskA'' размером <tex>7\times 7</tex> | ||
− | # Блоки уменьшения размеренности с ''RowLSTM'' блоком, в котором <tex>K_{is}</tex> имеет размер <tex>3\times 1</tex>, <tex>K_{ss}</tex> - <tex>3\times 2</tex>. Для ''Diagonal BiLSTM'' <tex>K_{is}</tex> имеет размер <tex>1\times 1</tex>, <tex>K_{ss}</tex> - <tex>1\times 2</tex>. Количество блоков варьируется. | + | # Блоки уменьшения размеренности с ''RowLSTM'' блоком, в котором <tex>K_{is}</tex> имеет размер <tex>3\times 1</tex>, <tex>K_{ss}</tex> {{---}} <tex>3\times 2</tex>. Для ''Diagonal BiLSTM'' <tex>K_{is}</tex> имеет размер <tex>1\times 1</tex>, <tex>K_{ss}</tex> {{---}} <tex>1\times 2</tex>. Количество блоков варьируется. |
# ''ReLU'' активация | # ''ReLU'' активация | ||
# Сверточный слой размером <tex>1\times 1</tex> | # Сверточный слой размером <tex>1\times 1</tex> |
Версия 14:05, 31 марта 2020
PixelRNN и PixelCNN — алгоритмы машинного обучения, входящие в семейство авторегрессивных моделей. Используются для генерации и дополнения изображений. Алгоритмы были представлены в 2016 году компанией DeepMind[1] и являются предшественниками алгоритма WaveNet[2], который используется в голосовом помощнике Google.
Основным преимуществом PixelRNN и PixelCNN является уменьшение времени обучения, по сравнению с наивными способами попиксельной генерации изображений.
Содержание
Постановка задачи
Пусть дано черно-белое изображение
размером . Построчно преобразуем картинку в вектор , соединяя конец текущей строки с началом следующей. В таком представлении изображения можно предположить, что значение любого пикселя может зависеть от значений предыдущих пикселей .Тогда значение пикселя [3], оценка совместного распределения всех пикселей будет записываться в следующем виде: .
можно выразить через условную вероятность , и, используя цепное правило для вероятностейЗадача алгоритма - восстановить данное распределение. Учитывая тот факт, что любой пиксель принимает значение
, необходимо восстановить лишь дискретное распределение.Идея
Т.к. утверждается, что значение текущего пикселя зависит от значений предыдущего, то уместно использовать RNN, а точнее LSTM. В ранних работах[4] уже использовался данный подход, и вычисление скрытого состояния происходило следующим образом: , т.е. для того, чтобы вычислить текущее скрытое состояние, нужно было подсчитать все предыдущие, что занимает достаточно много времени.
Авторы алгоритма модернизировали LSTM в RowLSTM и Diagonal BiLSTM таким образом, чтобы стало возможным распараллеливание вычислений, что в итоге положительно сказывается на времени обучения модели.
RowLSTM
В данной модификации LSTM предлагается рассчитывать скрытое состояние следующим образом: .
Как видно из формулы и Рисунка 2, значение текущего скрытого состояния не зависит от предыдущего слева, а зависит от предыдущих сверху, которые можно параллельно рассчитать.
Из плюсов данного алгоритма можно отметить его быстродействие — модель обучается быстрее, нежели наивный LSTM. Из минусов - относительно плохое качество получаемых изображений. Это связанно как минимум с тем, что мы используем контекст пикселей с предыдущей строки, но никак не используем контекст соседнего слева пикселя, которые является достаточно важным, т.к. является ближайшим с точки зрения построчной генерации изображения.
Отсюда напрашивается идея каким-то образом найти скрытое состояние пикселя слева, но при этом не потерять в производительности.
Diagonal BiLSTM
В данной версии скрытое состояние считается таким же образом, как и в наивном подходе:
, но при этом есть хитрость в самом вычислении. Построчно сдвинем строки вправо на один пиксель относительно предыдущей, а затем вычислим скрытые состояния в каждом столбце, как показано на Рисунке 3.Данная версия позволяет учитывать контекст более качественно, но при этом занимает больше времени, чем RowLSTM.
PixelCNN
Идея в том, что обычно соседние пиксели (в рамках ядра 9x9) хранят самый важный контекст для пикселя. Поэтому предлагается просто использовать известные пиксели для вычисления нового, как показано на рисунке 2.
Архитектура
В алгоритмах PixelRNN и PixelCNN используются несколько архитектурных трюков, позволяющих производить вычисления быстрыми и надежными.
Маскированные сверточные слои
В описаниях алгоритмов фигурируют два типа маскированных сверточных слоя — MaskA, MaskB. Они необходимы для сокрытия от алгоритма лишней информации и учета контекста - чтобы не обрабатывать изображение после каждого подсчета, удаляя значения пикселей, можно применить маску к изображению, что является более быстрой операцией.
Для каждого пикселя в цветном изображении в порядке очереди существуют три контекста: красный канал, зеленый и синий. В данном алгоритме очередь важна, т.е. если сейчас обрабатывается красный канал, то контекст только от предыдущих значений красного канала, если зеленый — то от всех значений на красном канале и предыдущих значениях на зеленом и т.д.
MaskA используется для того, чтобы учитывать контекст предыдущих каналов, но при этом не учитывать контекст от предыдущих значений текущего канала и следующих каналов. MaskB выполняет ту же функцию, что и MaskA, но при этом учитывает контекст от предыдущих значений текущего канала.
Уменьшение размерности
На вход в любой их указанных выше алгоритмов (PixelCNN, RowLSTM, Diagonal BiLSTM) подается большое количество объектов. Поэтому внутри каждого из них сначала происходит уменьшение их количества в два раза, а затем обратное увеличение до исходного размера. Структура алгоритма с учетом уменьшения размерности показана на рисунке 4.
Внутреннее устройство LSTM
Внутреннее устройство RowLSTM и Diagonal BiLSTM блоков одинаково, за исключением того, что во втором случае добавляется операция сдвига в начале и возврат к исходной структуре изображения в конце.
Структура LSTM блока:
- MaskB слой input-to-state учитывает контекст из входа.
- Сверточный слой state-to-state учитывает контекст из предыдущих скрытых слоев.
Используя эти два сверточных слоя формально вычисление LSTM блока можно записать следующим образом:
где
— функция активации, — операция свертки, — поэлементное умножение.Архитектура PixelRNN
- MaskA размером
- Блоки уменьшения размеренности с RowLSTM блоком, в котором имеет размер , — . Для Diagonal BiLSTM имеет размер , — . Количество блоков варьируется.
- ReLU активация
- Сверточный слой размером
- Softmax слой
Архитектура PixelCNN
- MaskA размером
- Блоки уменьшения размеренности для PixelCNN.
- ReLU активация
- Сверточный слой размером
- Softmax слой
Сравнение подходов
Критерий\название | PixelCNN | PixelRNN(Row LSTM) | PixelRNN(Diagonal BiLSTM) |
---|---|---|---|
Время обучения | Быстрый | Средний | Медленный |
Качество генерируемых изображений | Наихудшее | Средне-низкое | Средне-высокое |