Дополнение к ранжированию — различия между версиями
(→Слабое ранжирование) |
(→Слабое ранжирование) |
||
Строка 23: | Строка 23: | ||
Отношение несравнимости является [[Отношение эквивалентности |отношением эквивалентности]] для всех своих разбиений на множестве <tex>X</tex>, что являются [[Упорядоченное множество |линейно упорядоченными]]. | Отношение несравнимости является [[Отношение эквивалентности |отношением эквивалентности]] для всех своих разбиений на множестве <tex>X</tex>, что являются [[Упорядоченное множество |линейно упорядоченными]]. | ||
+ | === Применение функций === | ||
− | === Сильное ранжирование | + | === Сравнение === |
+ | |||
+ | |||
+ | == Сильное ранжирование == |
Версия 23:21, 8 апреля 2020
Содержание
Порядки
При рассмотрении различных ситуаций, связанных с извлечением экспертных знаний, возникает потребность каким-либо упорядочить все множество оценок, затрагивая уже понятие группового ранжирования. Положим, имеется конечное множество Χ объектов (например, экспертных оценок или критериев) и m экспертов, пронумерованных индексами 1,2... m. каждый i-й эксперт выставляет рейтинг, порождая порядок.
Слабое ранжирование
Слабое упорядовачивание
Определение: |
Бинарное отношение на множестве , которое является частично упорядоченным, называется слабым упорядочиванием (англ. weak ordering), если оно обладает следующими свойствами:
|
Рассмотрим случаи, определеяющее частичное упорядочение как:
- Полное: и , те если ~ пусто.
- Слабое: если , то ~ и .
Можно заключить, что любое полное упорядовачивание есть слабое. Отношение несравнимости является отношением эквивалентности для всех своих разбиений на множестве , что являются линейно упорядоченными.